Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2020, Vol. 57 Issue (3) :75-84    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on the Mechanical Behaviors of High-filled Loess Arched Open Cut Tunnel under Different Load Reduction Measures
(1 College of Civil Engineering, Lanzhou Institute of Technology, Lanzhou 730050; 2 Track Maintenance Section of Beijing High-speed Railway, Beijing, 100071;3 National and Provincial Joint Engineering Laboratory of Road & Bridge Disaster Prevention and Control,Lanzhou Jiaotong University, Lanzhou 730070; 4 Key Laboratory of Road & Bridge and Underground Engineering of Gansu Province,Lanzhou Jiaotong University, Lanzhou 730070;5 China Railway First Survey and Design Institute Group Co.,Ltd., Xi′an 710043)
Download: PDF (5070KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Compared with the conventional open cut tunnel, the applied load is larger and the structure is more complex concerning the high-filled open tunnel. It is not clear if the soil pressure change after load reduction is favourable for the tunnel structure in terms of mechanical behaviors. A Study on the mechanical behaviors of trench type high-filled arched open cut tunnel in loess under two load reduction measures is conducted through in door model test, and the law of soil pressure and lateral stress varying with fill height around the open cut tunnel and the load reduction effect are obtained. The test results show that the soil pressure above the arch can be transferred to the two sides of open cut tunnel due to the load reduction measures of EPS plate, EPS plate and geogrid, which reduces the soil pressure on the vault and arch bottom and increases the soil pressure on both sides; the stress on each section outside tunnel is reduced, and the orders in terms of effect of the load reduction materialon external stresses at different sections are haunch, side wall, vault, spandrel and arch bottom. A numerical simulation analysis on the test procedure is under taken by FEM strain model, with the results indicate that the average relative errors between the soil pressure, lateral pressure and the test results are 11.7% and 14.6%; load reduction of internal force increases with an increase of fill height and its change rate increases. For the load reduction of trench type open cut tunnel,it is necessary to reasonably select load reduction material and foundation stiffness under the condition of guaranteeing the safety of lining structure of open cut tunnel.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
MA Li1 LIU Yapeng2 LI Sheng3
4 LV Wenda5 XIE Chao3
4 DAI Jinpeng3
4
KeywordsHigh-filled open cut tunnel   Mechanical behavior   Load reduction   Model test   Numerical simulation     
Abstract: Compared with the conventional open cut tunnel, the applied load is larger and the structure is more complex concerning the high-filled open tunnel. It is not clear if the soil pressure change after load reduction is favourable for the tunnel structure in terms of mechanical behaviors. A Study on the mechanical behaviors of trench type high-filled arched open cut tunnel in loess under two load reduction measures is conducted through in door model test, and the law of soil pressure and lateral stress varying with fill height around the open cut tunnel and the load reduction effect are obtained. The test results show that the soil pressure above the arch can be transferred to the two sides of open cut tunnel due to the load reduction measures of EPS plate, EPS plate and geogrid, which reduces the soil pressure on the vault and arch bottom and increases the soil pressure on both sides; the stress on each section outside tunnel is reduced, and the orders in terms of effect of the load reduction materialon external stresses at different sections are haunch, side wall, vault, spandrel and arch bottom. A numerical simulation analysis on the test procedure is under taken by FEM strain model, with the results indicate that the average relative errors between the soil pressure, lateral pressure and the test results are 11.7% and 14.6%; load reduction of internal force increases with an increase of fill height and its change rate increases. For the load reduction of trench type open cut tunnel,it is necessary to reasonably select load reduction material and foundation stiffness under the condition of guaranteeing the safety of lining structure of open cut tunnel.
KeywordsHigh-filled open cut tunnel,   Mechanical behavior,   Load reduction,   Model test,   Numerical simulation     
Cite this article:   
MA Li1 LIU Yapeng2 LI Sheng3, 4 LV Wenda5 XIE Chao3, 4 DAI Jinpeng3 etc .Study on the Mechanical Behaviors of High-filled Loess Arched Open Cut Tunnel under Different Load Reduction Measures[J]  MODERN TUNNELLING TECHNOLOGY, 2020,V57(3): 75-84
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2020/V57/I3/75
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY