Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2021, Vol. 58 Issue (3) :33-42    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on the Tunnel Lining Cracking Patterns and Failure Ranges under Fire Scenarios
(1 School of Highway, Chang′an University, Xi′an 710064; 2 Engineering Research Center for Large Highway Structure Safety of Ministry of Education, Chang'an University, Xi′an 710064)
Download: PDF (4850KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Tunnel fires pose a threat to human life and have an impact on the structural safety of tunnels. First, this paper establishes a 3D temperature field of the fire smoke according to the actual fire conditions in a metro running tunnel. Then, the basic equations and solutions to the lining temperature field during the fire are derived by taking into consideration the thermal convection, heat conduction between the tunnel wall and heating smoke, the nonlinearity of heat transfer properties of the lining materials as well as the concrete spalling, The accuracy of the proposed method is verified by comparing with the test results. Furthermore, combined with the 3D temperature field obtained from the solution, the stress in the lining during the fire is solved by the finite element method under considering the lining material's thermodynamic properties as the non-linear functions to the temperature. Finally, the lining failure patterns and ranges are analyzed according to the elastic failure criterion and the triaxial stress conditions. The study results show that the lining failure is mainly caused by the compressive crushing of the inner concrete; after 2h of the fire, the compressive stress of the lining exceeds the compressive strength within the range of 16 m along the driving direction, 12 cm thickness of concrete and 112° from the vault to the sidewall; at the depth of main reinforcements of the lining segment, the concrete stress is less than the strength within 30 min; the failure pattern of the segment is mainly flake splitting; and the bolts have insufficient shear strength in the late stage of the fire, within the range of 37° at both sides of the vault.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
HAN Xingbo1
2 ZHAO Weifeng1
KeywordsLining   Fire   Thermal coupling   Failure law   Failure pattern     
Abstract: Tunnel fires pose a threat to human life and have an impact on the structural safety of tunnels. First, this paper establishes a 3D temperature field of the fire smoke according to the actual fire conditions in a metro running tunnel. Then, the basic equations and solutions to the lining temperature field during the fire are derived by taking into consideration the thermal convection, heat conduction between the tunnel wall and heating smoke, the nonlinearity of heat transfer properties of the lining materials as well as the concrete spalling, The accuracy of the proposed method is verified by comparing with the test results. Furthermore, combined with the 3D temperature field obtained from the solution, the stress in the lining during the fire is solved by the finite element method under considering the lining material's thermodynamic properties as the non-linear functions to the temperature. Finally, the lining failure patterns and ranges are analyzed according to the elastic failure criterion and the triaxial stress conditions. The study results show that the lining failure is mainly caused by the compressive crushing of the inner concrete; after 2h of the fire, the compressive stress of the lining exceeds the compressive strength within the range of 16 m along the driving direction, 12 cm thickness of concrete and 112° from the vault to the sidewall; at the depth of main reinforcements of the lining segment, the concrete stress is less than the strength within 30 min; the failure pattern of the segment is mainly flake splitting; and the bolts have insufficient shear strength in the late stage of the fire, within the range of 37° at both sides of the vault.
KeywordsLining,   Fire,   Thermal coupling,   Failure law,   Failure pattern     
Cite this article:   
HAN Xingbo1, 2 ZHAO Weifeng1 .Study on the Tunnel Lining Cracking Patterns and Failure Ranges under Fire Scenarios[J]  MODERN TUNNELLING TECHNOLOGY, 2021,V58(3): 33-42
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2021/V58/I3/33
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY