Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2021, Vol. 58 Issue (5) :122-128    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on the Influence Pattern of Seepage Field on Temperature Field in the Construction of the Metro Cross Passage by Freezing Method in Water-Rich Strata
(1 College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024; 2 The 2nd Engineering Co., Ltd. of China Railway 12th Bureau Group, Taiyuan 030032)
Download: PDF (3926KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Based on the hydro-thermal coupling theory, this paper establishes a numerical model for single-row freezing pipes to study the influence pattern of the seepage field on the temperature field under different water head differences in the freezing process, as well as a numerical model for multi-row freezing pipes to optimize the freezing effect because of the deficiency of freezing effect of single-row freezing pipes. Finally the numerical simulation results are applied and verified in the construction of a cross passage of Taiyuan subway project. The results show that the influence of groundwater seepage on the temperature field has a hysteresis effect along the seepage direction; during the freezing process the seepage field has the most significant effect on the upstream freezing effect, and using the single-row freezing pipes it cannot effectively reinforce the strata in a timely manner; under the same freezing conditions, arranging freezing pipes densely around the cross passage can advance the closing time of freezing wall by 43 d and increase the thickness of the upstream freezing wall by 0.7 m. The application effect in the actual engineering shows that using the multi-row-pipe freezing method no water inflow or sand gushing phenomenon is observed, thus achieving the purpose of ground freezing and reinforcement.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
PAN Xudong1 BAI Yunlong1 BAI Yunfei2 ZHANG Zhiqiang2 LIAO Lin1
KeywordsWater-rich stratum   Metro   Cross passage   Freezing method   Hydro-thermal coupling   Seepage field   Temperature field   Numerical simulation   Engineering application     
Abstract: Based on the hydro-thermal coupling theory, this paper establishes a numerical model for single-row freezing pipes to study the influence pattern of the seepage field on the temperature field under different water head differences in the freezing process, as well as a numerical model for multi-row freezing pipes to optimize the freezing effect because of the deficiency of freezing effect of single-row freezing pipes. Finally the numerical simulation results are applied and verified in the construction of a cross passage of Taiyuan subway project. The results show that the influence of groundwater seepage on the temperature field has a hysteresis effect along the seepage direction; during the freezing process the seepage field has the most significant effect on the upstream freezing effect, and using the single-row freezing pipes it cannot effectively reinforce the strata in a timely manner; under the same freezing conditions, arranging freezing pipes densely around the cross passage can advance the closing time of freezing wall by 43 d and increase the thickness of the upstream freezing wall by 0.7 m. The application effect in the actual engineering shows that using the multi-row-pipe freezing method no water inflow or sand gushing phenomenon is observed, thus achieving the purpose of ground freezing and reinforcement.
KeywordsWater-rich stratum,   Metro,   Cross passage,   Freezing method,   Hydro-thermal coupling,   Seepage field,   Temperature field,   Numerical simulation,   Engineering application     
Cite this article:   
PAN Xudong1 BAI Yunlong1 BAI Yunfei2 ZHANG Zhiqiang2 LIAO Lin1 .Study on the Influence Pattern of Seepage Field on Temperature Field in the Construction of the Metro Cross Passage by Freezing Method in Water-Rich Strata[J]  MODERN TUNNELLING TECHNOLOGY, 2021,V58(5): 122-128
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2021/V58/I5/122
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY