Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2022, Vol. 59 Issue (1) :164-175    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Model Test Study on‘Lost’Deformation and Corresponding Control Measures in Soft Rock Tunnels with Extremely High Ground Stress
(1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070; 2. National and Provincial Joint Engineering Laboratory of Road & Bridge Disaster Prevention and Control, Lanzhou Jiaotong University, Lanzhou 730070; 3. China Railway Liuyuan Group Co., Ltd., Tianjin 300308)
Download: PDF (6680KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In order to study the laws of core rock deformation and‘lost’rock deformation in soft rock tunnels with high ground stress, the deformations of core rocks in front of the working face and surrounding rocks are monitored by model test method, and the tunnel excavation process is simulated in detail under different high ground stress levels and working conditions with/without lining. The results show that: (1) the ground stress plays a key role in determining the installation time of soft rock tunnel support; (2) the advance deformation within 0.5D in front of the face accounts for about 2/3 of the total advance deformation; (3) the‘lost’deformation behind the tunnel face has a great impact on the monitoring and measurement. With a certain high ground stress, there is a power function relationship between the‘lost’deformation and the distance from the tunnel face. With the high ground stress greater than 20 MPa,it has little impact on the‘lost’deformation; (4) in order to effectively control the advance deformation in soft rock tunnels with high ground stress, it is necessary to reinforce the core rock mass within 0.5D in front of the tunnel face. For the core rock mass within 0.5D~1D in front of the tunnel face, the reinforcement depends on the actual situation.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
CHEN Zhimin1
2 LI Jiangpeng1 XUE Zhiwen3
KeywordsSoft rock tunnel   High ground stress;‘Lost’deformation   Model test   Advance deformation of tunnel face     
Abstract: In order to study the laws of core rock deformation and‘lost’rock deformation in soft rock tunnels with high ground stress, the deformations of core rocks in front of the working face and surrounding rocks are monitored by model test method, and the tunnel excavation process is simulated in detail under different high ground stress levels and working conditions with/without lining. The results show that: (1) the ground stress plays a key role in determining the installation time of soft rock tunnel support; (2) the advance deformation within 0.5D in front of the face accounts for about 2/3 of the total advance deformation; (3) the‘lost’deformation behind the tunnel face has a great impact on the monitoring and measurement. With a certain high ground stress, there is a power function relationship between the‘lost’deformation and the distance from the tunnel face. With the high ground stress greater than 20 MPa,it has little impact on the‘lost’deformation; (4) in order to effectively control the advance deformation in soft rock tunnels with high ground stress, it is necessary to reinforce the core rock mass within 0.5D in front of the tunnel face. For the core rock mass within 0.5D~1D in front of the tunnel face, the reinforcement depends on the actual situation.
KeywordsSoft rock tunnel,   High ground stress;‘Lost’deformation,   Model test,   Advance deformation of tunnel face     
Received: 2021-06-18;
Cite this article:   
CHEN Zhimin1, 2 LI Jiangpeng1 XUE Zhiwen3 .Model Test Study on‘Lost’Deformation and Corresponding Control Measures in Soft Rock Tunnels with Extremely High Ground Stress[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(1): 164-175
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2022/V59/I1/164
 
No references of article
[1] WANG Fei.A Model Test Study on the Dewatering in the Construction of Ultra-deep Shafts in Deep and Thick Sand and Pebble Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(1): 176-182
[2] HE Leping1 XU Yingdong1 HU Qijun1 CAI Qijie2.Assessment of Large Deformation Risk in Soft Rock Tunnels Based on Game Theory - Cloud Model[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(6): 85-94
[3] WEI Gang1 HAO Wei2 WEI Xinjiang1 WANG Xiao2 ZHANG Shuyuan2.Numerical Simulation Study on Whole Construction Process of Vertical Pipe Jacking[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(6): 59-67
[4] SONG Yang1 WANG Weiyi2 DU Chunsheng3.On Parameter Optimization for a Slurry Shield Approaching Construction under Existing Subway Tunnels in Water-Rich Pebble and Mudstone Composite Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(5): 85-95
[5] GUO Rui1, 2,3 ZHENG Bo2, 3 FANG Lin1, 4 WU Jian2, 3.Model Test Study on Distribution Characteristics of Longitudinal Temperature Field in Tunnels in Cold Regions[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(5): 129-139
[6] LI Fuhai1 LI Rui1 JIANG Yilin1 GAO Hao1 WANG Yibin1 WANG Peixun2.Experimental Study on the Mechanical Behaviors of the Lining Structure Affected by Grouting in Tunnel Secondary Lining Cavities through Molds[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(5): 147-158
[7] WEI Gang1,2 ZHAO Deqianlin1 HUANG Rui1.A Review of Model Test Studies on the Impact of Shield Construction on Adjacent Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(5): 1-8
[8] HUI Qiang1 ZHANG Jun2 JIANG Haibo1.Study on the Characteristics and Distribution Laws of Plastic Zone Induced by Deep-buried High-geostress Hydraulic Tunnelling in Jointed Rock Mass[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(4): 86-94
[9] LI Fuhai1 LI Rui1 WU Haonan1 GAO Hao1 WANG Bo1 ZHANG Guibin2 CHEN Siyin3.Analysis of Load Transfer of Fully Bonded Anchor Bolts under High Ground Temperature[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(4): 157-162
[10] JIA Yanling1,2,3 ZHOU Shaowen2,3 WANG Gang2,3 ZHOU Weizheng2,3 YANG Kunguang2,3.Study on the Stress Characteristics of the Mid-pillar in the Expansion of an Existing Tunnel into a Double-arch Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(3): 130-138
[11] CHEN Jing1 YAN Shuwang2 ZHONG Xiaokai3.Finite Element Study on Working Mechanism of Plugging Airbags in Tunnels under External Pressure[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(2): 135-144
[12] WANG Chaodong1 LAI Peng′an1 CAO Yang2 YANG Sheng2.Model Test Study on the Influence of the Close Crossing Angles of Overlapped Shield Tunnels on Existing Tunnels in Coastal Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(1): 168-174
[13] WEI Yinghua LIU Fei.Numerical Simulation Analysis of the Rockburst Mechanism in the Tunnel with High Geostress[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(6): 46-54
[14] TIAN Xingchao LIU Yuanming TAO Tiejun YANG Jiazhao MA Zhili.Model Test Study on Mechanical Behaviors of Tunnel Construction in Soft and Fractured Surrounding Rocks[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(5): 200-209
[15] LIAO Yankai1 GUO Deping1 LIU Zhiqiang2 CHEN Dayang2.Application of Peripheral Strain and Squeezing Factor Methods in the Prediction of Large Deformation of Tunnel Surrounding Rocks[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 20-26
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY