Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2022, Vol. 59 Issue (1) :164-175    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Model Test Study on‘Lost’Deformation and Corresponding Control Measures in Soft Rock Tunnels with Extremely High Ground Stress
(1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070; 2. National and Provincial Joint Engineering Laboratory of Road & Bridge Disaster Prevention and Control, Lanzhou Jiaotong University, Lanzhou 730070; 3. China Railway Liuyuan Group Co., Ltd., Tianjin 300308)
Download: PDF (6680KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In order to study the laws of core rock deformation and‘lost’rock deformation in soft rock tunnels with high ground stress, the deformations of core rocks in front of the working face and surrounding rocks are monitored by model test method, and the tunnel excavation process is simulated in detail under different high ground stress levels and working conditions with/without lining. The results show that: (1) the ground stress plays a key role in determining the installation time of soft rock tunnel support; (2) the advance deformation within 0.5D in front of the face accounts for about 2/3 of the total advance deformation; (3) the‘lost’deformation behind the tunnel face has a great impact on the monitoring and measurement. With a certain high ground stress, there is a power function relationship between the‘lost’deformation and the distance from the tunnel face. With the high ground stress greater than 20 MPa,it has little impact on the‘lost’deformation; (4) in order to effectively control the advance deformation in soft rock tunnels with high ground stress, it is necessary to reinforce the core rock mass within 0.5D in front of the tunnel face. For the core rock mass within 0.5D~1D in front of the tunnel face, the reinforcement depends on the actual situation.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
CHEN Zhimin1
2 LI Jiangpeng1 XUE Zhiwen3
KeywordsSoft rock tunnel   High ground stress;‘Lost’deformation   Model test   Advance deformation of tunnel face     
Abstract: In order to study the laws of core rock deformation and‘lost’rock deformation in soft rock tunnels with high ground stress, the deformations of core rocks in front of the working face and surrounding rocks are monitored by model test method, and the tunnel excavation process is simulated in detail under different high ground stress levels and working conditions with/without lining. The results show that: (1) the ground stress plays a key role in determining the installation time of soft rock tunnel support; (2) the advance deformation within 0.5D in front of the face accounts for about 2/3 of the total advance deformation; (3) the‘lost’deformation behind the tunnel face has a great impact on the monitoring and measurement. With a certain high ground stress, there is a power function relationship between the‘lost’deformation and the distance from the tunnel face. With the high ground stress greater than 20 MPa,it has little impact on the‘lost’deformation; (4) in order to effectively control the advance deformation in soft rock tunnels with high ground stress, it is necessary to reinforce the core rock mass within 0.5D in front of the tunnel face. For the core rock mass within 0.5D~1D in front of the tunnel face, the reinforcement depends on the actual situation.
KeywordsSoft rock tunnel,   High ground stress;‘Lost’deformation,   Model test,   Advance deformation of tunnel face     
Received: 2021-06-18;
Cite this article:   
CHEN Zhimin1, 2 LI Jiangpeng1 XUE Zhiwen3 .Model Test Study on‘Lost’Deformation and Corresponding Control Measures in Soft Rock Tunnels with Extremely High Ground Stress[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(1): 164-175
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2022/V59/I1/164
 
No references of article
[1] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[2] YANG Zhongmin1,2,3 ZHANG Yufang1,2,3 LI Jian1,2,3 HE Jiajun1,2,3 ZHANG Shengjie.Mechanism and Influencing Factor Sensitivity Analysis of Invert Arch Uplift in Red-bed Soft Rock Tunnels in Northwestern China[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 11-18
[3] WANG JingYong1,2 WANG Ping2 YANG Jin2 JI Feng3.Optimization Study on the Support Structure of a Tunnel in Carbonaceous Phyllite Using Physical Model Tests[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 160-169
[4] LIU Jie LIU Xinrong2 HAN Yafeng1,2 LIANG Ninghui.Study on the Deflection Pattern of Principal Strain Axis during Progressive Failure of Tunnel-type Anchorage in Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 190-200
[5] GUO Ying PENG Wenqing CHEN Shiqiang ZHANG Qiong WANG Jiawei.Calculation Method and Validation of Equivalent Length for Traffic Tunnel Ventilation Model Test[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 230-240
[6] TAO Weiming1,2 ZHU Xingyu1,3 ZHANG Zhiqiang1,3 YU Hang1,3 FAN Lei2.Experimental Study on the Catastrophic Evolution of Water and Mud Inrush in Tunnels with Karst Conduits[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(1): 221-230
[7] ZHANG Xinyang1, 2 SHEN Yusheng1, 2 CHANG Mingyu1, 2 WANG Haokang1, 2 PAN Xiaohai1, 2 WANG Yanyan1, 2.Mix Proportion Design of Similar Materials for Tunnel Surrounding Rocks Based on GA-BP Neural Network[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 82-91
[8] KUANG Liang1 SU Wei1 TAO Weiming1 TIAN Siming2 SHEN Yusheng3 LI Xu2 WANG Huiwu1.Study on the Impact Zoning and Fortification Range of Tunnel Structures Crossing Strike-slip Faults[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 45-54
[9] YANG Wendong1 WU Yang1 WANG Zhide1 WU Haigang1,2 LI Gen1.Experimental Study on the Influence Zoning on Existing Pile Foundations Induced by Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 200-208
[10] YANG Chunshan1 XU Shiyang2 WEI Lixin1 CHEN Junsheng3.Experimental Study on the Mechanical Characteristics of Shield Tunnels under Vertical Jacking[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 210-218
[11] YANG Yi1,2 SHI Chenghua1,2,3 ZHENG Keyue1,2 PENG Menglong1,4 LOU Yili1,2.Research on Large Deformation Grading Control Technology for High Stress Red Layered Soft Rock Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 252-262
[12] ZHOU Song1 PAN Yue1,2 LIU Yongsheng1,2 XIE Tao1.Mechanical Behavior Analysis and Construction Optimization for Inclined Shaft Transitioning to Main Tunnel in Extreme-highly Stressed and Fractured Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(4): 142-150
[13] PAN Xiaohai1 SHEN Yusheng1 WANG Haokang1 WANG Yanyan1 ZHANG Xinyang1 ZHANG Xi1 ZUO Leibin2.Study on Response Characteristics of the Tunnel Structure under Dislocation of Strike-slip Faults with Multiple Fracture Surfaces[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(4): 210-220
[14] BAO Yeming1 CHEN Ziquan2 ZHOU Zihan2 WANG Bo2.Stability Analysis of Surrounding Rock in High-geostress Soft Rock Tunnels under Rapid Construction[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(3): 25-34
[15] CHEN Zeen1,2 CHEN Xiaofeng1,2,3 KONG Xiangmiao4 ZHANG Xin5 ZHANG Yongqiang2.Study on the Flow Characteristics and Local Loss Characteristics of the Confluence Segment of Bifurcate Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(3): 53-60
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY