<<
[an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on the Thermal Insulation and Shock Absorption Technology for Tunnels Crossing the Heat-conducting Fault in a Highly Seismic Zone
(1. School of Civil Engineering, North China University of Technology, Beijing 100144; 2. Department of Civil Engineering, Hebei Jiaotong Vocational and Technical College, Shijiazhuang 050091; 3. China Railway City Development and Investment Group Co., Ltd.,Chengdu 610218)
Abstract To further improve the thermal insulation and shock absorption performance of tunnels crossing the heatconducting fault in a highly seismic zone, the finite difference numerical software is utilized to study the thermal isolation and shock absorption effect of different measures by relying on the heat-conducting fault section works of a newly-built tunnel. The results show that the composite structure of plain concrete lining, the high-damping composite structure of plain concrete and the high-damping composite structure of steel fiber reinforced concrete have almost the same thermal insulation effect, and the high-damping composite structure of plain concrete is slightly better than the other two; in terms of shock absorption, the adoption of the high-damping composite structure of steel fiber reinforced concrete achieves the best effect, and the plain concrete lining has the worst shock absorption effect;compared with plain concrete, the secondary lining structure of the high-damping composite structure of steel fiber reinforced concrete increases the minimum safety coefficient by 28.14%.
Abstract:
To further improve the thermal insulation and shock absorption performance of tunnels crossing the heatconducting fault in a highly seismic zone, the finite difference numerical software is utilized to study the thermal isolation and shock absorption effect of different measures by relying on the heat-conducting fault section works of a newly-built tunnel. The results show that the composite structure of plain concrete lining, the high-damping composite structure of plain concrete and the high-damping composite structure of steel fiber reinforced concrete have almost the same thermal insulation effect, and the high-damping composite structure of plain concrete is slightly better than the other two; in terms of shock absorption, the adoption of the high-damping composite structure of steel fiber reinforced concrete achieves the best effect, and the plain concrete lining has the worst shock absorption effect;compared with plain concrete, the secondary lining structure of the high-damping composite structure of steel fiber reinforced concrete increases the minimum safety coefficient by 28.14%.
CUI Guangyao1 SHI Wenhao1 WANG Daoyuan2 WANG Mingsheng3
.Study on the Thermal Insulation and Shock Absorption Technology for Tunnels Crossing the Heat-conducting Fault in a Highly Seismic Zone[J] MODERN TUNNELLING TECHNOLOGY, 2022,V59(6): 70-76