Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2023, Vol. 60 Issue (2) :22-27    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Research on Virtual Joint Test Method of Shield Tunnels Based on Independent Cover Isogeometric Shell Model
(Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092)
Download: PDF (2693KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract To address the limitations of engineering analogy, physical tests, and numerical simulations in the bending stiffness acquisition and performance study of deep-buried, large-section, and irregular-shaped shield tunnel joints, this paper establishes a virtual joint test method and platform based on independent cover isogeometric shell models. The study discusses the key theories, algorithms and techniques to realize the virtual tests, analyzes the feasibility and advantages of virtual tests against physical tests, and uses virtual tests to analyze the joint bending resistance of a large-section deep-buried tunnel and its influencing factors. The results show that joint bending resistance curves that match physical tests can be obtained by inputting non-sensitive parameters in the virtual test platform, and the computation cost is only about 0.75% of the solid finite element model. Within the range of the study,the joint stiffness of large-section deep-buried tunnels is valued in the range of 2.98×105~2.57×106 kN·m/rad, and the joint stiffness decreases significantly with the increase of the deformation joint length of the segment.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
CHEN Jingxu CAI Yongchang
KeywordsShield tunnel   Bending stiffness   Numerical calculation   Joint   Isogeometric analysis   Virtual test     
Abstract: To address the limitations of engineering analogy, physical tests, and numerical simulations in the bending stiffness acquisition and performance study of deep-buried, large-section, and irregular-shaped shield tunnel joints, this paper establishes a virtual joint test method and platform based on independent cover isogeometric shell models. The study discusses the key theories, algorithms and techniques to realize the virtual tests, analyzes the feasibility and advantages of virtual tests against physical tests, and uses virtual tests to analyze the joint bending resistance of a large-section deep-buried tunnel and its influencing factors. The results show that joint bending resistance curves that match physical tests can be obtained by inputting non-sensitive parameters in the virtual test platform, and the computation cost is only about 0.75% of the solid finite element model. Within the range of the study,the joint stiffness of large-section deep-buried tunnels is valued in the range of 2.98×105~2.57×106 kN·m/rad, and the joint stiffness decreases significantly with the increase of the deformation joint length of the segment.
KeywordsShield tunnel,   Bending stiffness,   Numerical calculation,   Joint,   Isogeometric analysis,   Virtual test     
Cite this article:   
CHEN Jingxu CAI Yongchang .Research on Virtual Joint Test Method of Shield Tunnels Based on Independent Cover Isogeometric Shell Model[J]  MODERN TUNNELLING TECHNOLOGY, 2023,V60(2): 22-27
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2023/V60/I2/22
 
No references of article
[1] YAN Pengfei CAI Yongchang ZHOU Long.Nonlinear Model for Segment Joint Stiffness Based on Deep Neural Network and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 24-33
[2] QIAN Yuan1 XU Chong2 LIU Xiaorui2 HUANG Meng3.Study on the Cracking Mechanism of Subsea Shield Tunnel Segments under the Dual Mechanical Action of Loading and Corrosive Expansion[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 102-111
[3] HU Zhenyu1 FENG Kun1 GUO Wenqi1 PENG Changsheng2 LI Jiaoyang2.Study on the Impact of Different Construction Timings of Internal Structure on the Stress of Segmental Lining of the Shield Tunnel with an Super-large Section[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 90-101
[4] XUE Guangqiao1 YU Xiongbing3 XIAO Mingqing1,2 ZHANG Chaoyong3,4 HE Yingdao1,2.Numerical Simulation Study on Water Resistance of Gasket with Consideration of Compression-Joint Staggering-External Hydraulic Pressure[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 139-145
[5] XU Youjun1,2,3 KANG Jiawang1 ZHANG Chao1,2,3 HUANG Zhengdong1 ZHANG Xu1,2,3.Shear Failure Mechanism of F-type Socket-and-Spigot Joint in Rectangular Pipe Jacking Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 189-198
[6] XIAO Mingqing1,2 YANG Wenqian3 FENG Kun3 JIAO Qizhu1 MAO Sheng1 WANG Yunchao3.Simulation Analysis of the Forces on Lining Structure of Shield Tunnels and Fire Resistance Measures during Fire[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 199-207
[7] YUAN Hongyun1,2 CHEN Liwei2 LIU Zhiqiang2.Method for Comprehensive Evaluation of Longitudinal Crack Defect of Lining of Single-track Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 208-216
[8] HAN Xiaoming1,2 HE Yuan1,2 ZHANG Feilei2,3,4.Study on Key Construction Technology for Cross Passages in Large-diameter Shield Tunnels in Water-bearing Silty Fine Sand Stratum:A Case Study of the Karnaphuli River Tunnel Project in Bangladesh[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 227-235
[9] ZHENG Shuang1,2 LIU Chao3 ZHU Delin3 LIU Hai3 JIA Xinjuan1.A Study on Disturbance Pattern of Asymmetric Synchronous Grouting on Ground during Large Diameter Shield Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 168-177
[10] ZHANG Jianyong1 LI Mingyu2,3 CHEN Jian3,4 YU Liucheng2 LI Yixiang1 YANG Gongbiao3,4 WANG Yue2,3.Prediction Methods for Segment Uplift in Large-diameter Shield Tunnels Based on Double Elastic Foundation Beams[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 159-167
[11] WU Ze1 GU Fulin2 FU Yanbin3.Quantitative Deviation Correction Technologies for Subway Shield Tunnels in Operation through Compaction Grouting[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 185-193
[12] YUAN Jie1 QI Jiarui2 XIAO Xiang1 LI Zanxin1 YU Lixin1 PAN Yiheng2.An Experimental Study on the Active Regulation of Filling Pressure in Shield Receiving Steel Sleeve[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 230-237
[13] DU Yongxiao1,2,3 SUN Xiaoli1,2,4 YANG Jun1,2,4 ZHANG Yansen1,2.A Study on the Detection and Evaluation of the Technical Condition of Fire Damage in Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 260-270
[14] CAO Xiangpeng1,2 FENG Kun2 XUE Haoyun2 MAO Sheng1 YU Bo2,3.Study on Transverse Seismic Performance of Double Lining of Large Diameter Shield Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(1): 130-139
[15] CHEN Fujiang1 DUAN Rongqian1 ZHANG Xin2 LIU Jingang3 SUN Cangqian1 LI Xiqian1.Analysis on Vibration Influence of the Construction of Short-distance Pile Foundation on Existing Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(1): 140-148
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY