Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2023, Vol. 60 Issue (6) :68-79    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Optimization of Method Statement for Low-carbon Tunnel Construction Based on SVM-MAUT
(1. School of Civil Engineering of Xi'an University of Architecture and Technology, Xi'an 710055; 2. Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi'an University of Architecture and Technology, Xi'an 710055;3. Tunnel and Underground Structure Engineering Research Institute of Xi'an University of Architecture and Technology,Xi'an 710055; 4. The First Engineering Co., Ltd. of China Railway Beijing Engineering Group, Xi'an 710055;5. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074)
Download: PDF (4147KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract To accomplish the dual carbon goals, it is urgently necessary to optimize the method statement for lowcarbon tunnel construction. With the help of the comprehensive evaluation system supported by multi-attribute de? cision-making, the to-be-evaluated stability indicators for tunnel construction in various scenarios have been examined, and 3 factors, i.e. surrounding rock stability, stratum stability and support stability, have been identified.Regarding the non-stability indicators, priority is given to the carbon emission non-stability factor, and the comprehensive evaluation indicator system for method statement for low-carbon tunnel construction is established. A mapping model is created that is based on the Support Vector Machine-Multi-Attribute Utility Theory (SVM-MAUT), in order to replace the traditional comprehensive evaluation method and find the low-carbon tunnel construction method statement comparison method. In the last step, the comparison method is applied to optimization of the construction method for the soft rock section with rock breakage and large deformation in Daliangshan Tunnel No. 1. Based on the attribute utility of the method statements for the basalt, claystone and silty mudstone sections, the optimum combination of method statements is identified. Compared with the method statement that generates extreme carbon emission, the carbon emission equivalent per linear meter is reduced by 2 313.01 kg, 790.10 kg and 717.84 kg respectively, the tunnel stability conforms to the design requirements and the applicable standards, and the sectional convergence deformation is within the preset control value range.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
LIU Shihao1 SONG Zhanping1
2
3 XU Leilei4 XIA Zhenzhao5 WANG Junbao1
2
3
KeywordsTunnel engineering   Comparison of method statements   Carbon emission   SVM-MAUT     
Abstract: To accomplish the dual carbon goals, it is urgently necessary to optimize the method statement for lowcarbon tunnel construction. With the help of the comprehensive evaluation system supported by multi-attribute de? cision-making, the to-be-evaluated stability indicators for tunnel construction in various scenarios have been examined, and 3 factors, i.e. surrounding rock stability, stratum stability and support stability, have been identified.Regarding the non-stability indicators, priority is given to the carbon emission non-stability factor, and the comprehensive evaluation indicator system for method statement for low-carbon tunnel construction is established. A mapping model is created that is based on the Support Vector Machine-Multi-Attribute Utility Theory (SVM-MAUT), in order to replace the traditional comprehensive evaluation method and find the low-carbon tunnel construction method statement comparison method. In the last step, the comparison method is applied to optimization of the construction method for the soft rock section with rock breakage and large deformation in Daliangshan Tunnel No. 1. Based on the attribute utility of the method statements for the basalt, claystone and silty mudstone sections, the optimum combination of method statements is identified. Compared with the method statement that generates extreme carbon emission, the carbon emission equivalent per linear meter is reduced by 2 313.01 kg, 790.10 kg and 717.84 kg respectively, the tunnel stability conforms to the design requirements and the applicable standards, and the sectional convergence deformation is within the preset control value range.
KeywordsTunnel engineering,   Comparison of method statements,   Carbon emission,   SVM-MAUT     
Cite this article:   
LIU Shihao1 SONG Zhanping1, 2, 3 XU Leilei4 XIA Zhenzhao5 WANG Junbao1 etc .Optimization of Method Statement for Low-carbon Tunnel Construction Based on SVM-MAUT[J]  MODERN TUNNELLING TECHNOLOGY, 2023,V60(6): 68-79
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2023/V60/I6/68
 
No references of article
[1] AI Qing1 LI Yixuan1 ZHU Junyi2.Study on Carbon Emission Characteristics and Emission Reduction Approaches in the Full Life Cycle of River-crossing Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(6): 11-19
[2] LI Jiahao1 XI Mingxing2 SHEN Yi1 LIU An2 ZHU Hehua1.Calculation and Composition Assessment of the Carbon Emission in the Construction Phase of Highway Tunnels Based on SimaPro[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(6): 20-28
[3] ZENG Hongrui1,2 SUN Wenhao3 HE Wei3 GUO Yalin1,2 GUO Chun1,2.Study on the Carbon Emission Prediction Model for Railway Tunnel Construction Based on Machine Learning[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(6): 29-39
[4] Zhang Xiaoying1 Liu Tao2 Shen Yi2 Liu An3.Analysis of the Effect of Lighting on Carbon Emission in the Full Life Cycle of Highway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(6): 40-47
[5] YIN Yan BAO Weixing LU Hanqing ZHANG Zhiyong CHE Bowen PAN Zhenhua LIN Xuhui.Study on the Carbon Emission Characteristics and Carbon Emission Reduction Model in the Sewage Treatment Process in the Tianshan Shengli Tunnel Construction Area[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(6): 58-67
[6] ZHU Yujie LI Peinan LIU Yuqing ZHANG Ziyao.Study on CO2 Adsorption Performance of Nitrogen-doped Mesoporous Carbon and Its Engineering Application[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(6): 91-99
[7] ZHANG Shichao1,2 WANG Yaqiong1,2 GAO Qidong1,2 ZHOU Haixiao1,2 WANG Zhifeng1,2 REN Rui1,2.Tunnel Portal Section Crown Settlement SVR Prediction Models Based on Different Optimization Algorithms and Their Comparative Evaluation[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(6): 139-150
[8] SHEN Yusheng1,2 ZHAO Helin1 ZHU Zhengchao1 YI Penghao1 LEI Long3 SU Wei3.Improved Integral Response Displacement Method for Shallow-buried Tunnel Portal Section in Highly Seismic Regions[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(5): 78-87
[9] WENG Yuan1 LI Aichun1 ZHAO Ting1 LIU Buwu2.Research on Factors Influencing the Resilience of the Tunnel System and Related Evaluation[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(5): 40-47
[10] LUO Chao1 LI Zeyu1 LIU Rufei1 LI Yanyan1 LI Ming2.Monitoring Method for Multi-phase Crown Deformation of Highway Tunnels Based on Fixed-station Laser Scanning Data[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(5): 158-166
[11] WANG Jianyu.For the Harmony between Tunnelling and Geological Body ——Discussion on Focused Hot Issues in Conventional Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 1-5
[12] ZHENG Kunlong1,2 WANG Jianyun2 LINGHU Yan1 YANG Xiaohua3 DING Yate1 CHEN Kun1 WANG Zhifeng3.Experimental Study on Prevention and Treatment of Tunnel Leakage with Rapid Setting Permeable Crystallographic Grouts[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 254-263
[13] LI Wei1 JIANG Yajun2 LIU Shijun2 WANG Cuijuan3 XIAO Huarong4 CUI Hengtao2.Study on the Growth Mechanism of Calcium Carbonate Crystal of Karst Water on the Tunnel Concrete Substrate[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 246-253
[14] GUO Yalin1,2 SUN Wenhao3 XU Hongwei3 HE Wei3 CHEN Zheng1,2 GUO Chun1,2.Comparison between Shield Method and Drill and Blast Method Regarding Carbon Emission Intensity in Subway Tunnel Construction[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 14-23
[15] JI Yunpeng1,2 FANG Lingguo3 TANG Haotian4 ZHANG Xingli1,2 WANG Xiangjin1,2 BAI Yuntian1,2.Study on Forces on Pipe Umbrella Support in the Whole Process of Tunnel Excavation[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 123-138
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY