Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2014, Vol. 51 Issue (1) :110-116    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
On Temperature Field Variation of the Surrounding Soil Mass Caused by Artificial Single Pipeline Freezing
(1 Faculty of Civil Engineering and Architecture, Kunming University of Science and Technology, Kunming 650500; 2 School of Urban Construction and Management, Yunnan University, Kunming 650091)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract A phase-transition temperature field model of artificial freezing was established to study the transient variation of the temperature field of a surrounding soil mass being divided into a frozen zone and a cooling zone. A phase-transition heat conduction equation of single pipeline freezing was solved with variable substitution, and an analytical expression of transient variation of the temperature of soil mass was derived, which is indicated by exponential integral function. Using finite terms of exponential integral function series expansion, analytical expressions for the temperature field distributions of both the frozen zone and cooling zone around the frozen pipe were obtained. The effects on the artificial freezing temperature field caused by temperature differencesin frozen soil mass, heat absorption coefficients of frozen pipes, and the latent heat of frozen soil masses per unit volume are discussed based on a specific case. The results prove that: (1) the greater the temperature difference of the frozen soil mass, the slower the frozen front radius develops; (2) the larger the heat absorption coefficient of the frozen pipe, the faster the frozen front radius develops; and (3) the smaller the latent heat of the frozen soil mass, the faster the frozen front radius develops. The above three influential factors have a linear relationship with the development of the frozen front radius.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
WANG Zhi-Liang-1
Shen-Lin-Fang-1
Xie-Jian-Bin-2
KeywordsArtificial freezing method   Temperature field   Frozen pipe   Heat conduction   Frozen front radius     
Abstract: A phase-transition temperature field model of artificial freezing was established to study the transient variation of the temperature field of a surrounding soil mass being divided into a frozen zone and a cooling zone. A phase-transition heat conduction equation of single pipeline freezing was solved with variable substitution, and an analytical expression of transient variation of the temperature of soil mass was derived, which is indicated by exponential integral function. Using finite terms of exponential integral function series expansion, analytical expressions for the temperature field distributions of both the frozen zone and cooling zone around the frozen pipe were obtained. The effects on the artificial freezing temperature field caused by temperature differencesin frozen soil mass, heat absorption coefficients of frozen pipes, and the latent heat of frozen soil masses per unit volume are discussed based on a specific case. The results prove that: (1) the greater the temperature difference of the frozen soil mass, the slower the frozen front radius develops; (2) the larger the heat absorption coefficient of the frozen pipe, the faster the frozen front radius develops; and (3) the smaller the latent heat of the frozen soil mass, the faster the frozen front radius develops. The above three influential factors have a linear relationship with the development of the frozen front radius.
KeywordsArtificial freezing method,   Temperature field,   Frozen pipe,   Heat conduction,   Frozen front radius     
published: 2013-06-16
Cite this article:   
WANG Zhi-Liang-1, Shen-Lin-Fang-1, Xie-Jian-Bin-2 .On Temperature Field Variation of the Surrounding Soil Mass Caused by Artificial Single Pipeline Freezing [J]  MODERN TUNNELLING TECHNOLOGY, 2014,V51(1): 110-116
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2014/V51/I1/110
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY