Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2014, Vol. 51 Issue (3) :110-116    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Analysis of Local Damage Induced by Tunnelling in a Fractured Rock Mass Based on Noncontact Measurement Techniques
(College of Resources and Civil Engineering, Northeastern University, Shenyang 110819)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract  The rational determination of an Excavation Damage Zone (EDZ) in fractured rock plays an important role in selecting an excavation method and support pattern. A quantitative analysis was carried out for an EDZ range and its mechanical properties using an optimized numerical model based on the fine measurement and characterization of the structural plane of the rock onsite. Using the excavation of a tunnel on the Jianchang-Xingcheng expressway as an example, information regarding the structural plane at the working face was collected by noncontact measurement, imported into the GeoSMA-3D system, and used to produce a 3D model approximating the actual situation. Based on this, the PFC method was adopted to determine the EDZ range, and comparative analyses of the surrounding rock stress curve, displacement curve, force chain distribution, and fracture distribution were carried out. The results show that the force chain concentration represents the degree of disturbance to the surrounding rock, while the fracture density represents the degree of damage, and the fracture connectivity implies the failure zone, by which the EDZ and the mechanical properties of the fractured rock mass can be accurately identified. The local damage during rock failure can be well simulated by the PFC method.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
WANG Shu-Hong
ZAN Shi-Ming
WANG Cun-Gen
NI
YONG
Keywords Tunnelling   EDZ   Noncontact measurement   GeoSMA-3D   PFC     
Abstract: The rational determination of an Excavation Damage Zone (EDZ) in fractured rock plays an important role in selecting an excavation method and support pattern. A quantitative analysis was carried out for an EDZ range and its mechanical properties using an optimized numerical model based on the fine measurement and characterization of the structural plane of the rock onsite. Using the excavation of a tunnel on the Jianchang-Xingcheng expressway as an example, information regarding the structural plane at the working face was collected by noncontact measurement, imported into the GeoSMA-3D system, and used to produce a 3D model approximating the actual situation. Based on this, the PFC method was adopted to determine the EDZ range, and comparative analyses of the surrounding rock stress curve, displacement curve, force chain distribution, and fracture distribution were carried out. The results show that the force chain concentration represents the degree of disturbance to the surrounding rock, while the fracture density represents the degree of damage, and the fracture connectivity implies the failure zone, by which the EDZ and the mechanical properties of the fractured rock mass can be accurately identified. The local damage during rock failure can be well simulated by the PFC method.
Keywords Tunnelling,   EDZ,   Noncontact measurement,   GeoSMA-3D,   PFC     
published: 2013-11-06
Cite this article:   
WANG Shu-Hong, ZAN Shi-Ming, WANG Cun-Gen etc .Analysis of Local Damage Induced by Tunnelling in a Fractured Rock Mass Based on Noncontact Measurement Techniques[J]  MODERN TUNNELLING TECHNOLOGY, 2014,V51(3): 110-116
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2014/V51/I3/110
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY