Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2014, Vol. 51 Issue (5) :71-77    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Influence of Lining Section Type on a Tunnel Structure Under Active Fault Movement
(1 College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092; 2 Shanghai Tongyan Civil Engineering Technology Co. Ltd., Shanghai 200092; 3 Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Using the finite-element method, this paper compares and studies the influence of lining section type on the stress and plastic strain of tunnels with chain-structures under active fault movement based on five three-centered circular sections of different invert radii from the Qipanshi tunnel project. The results show that: (1) the secondary lining is subjected to the combined action of tensioning, shearing, and squeezing due to fault movement; (2) high stress is mainly distributed at the arch spring with the peak stress on the hanging wall, and tensile force will be effectively absorbed by the shear crack; (3) with the tunnel section constantly tending toward a perfect circle, the maximum and minimum principal stresses and shear stress of the secondary lining decrease while the equivalent plastic stain increases.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
LIU Xue-Zeng-1
GU Xue-Ying-2
DAI Zhi-Ping-2
LI Xue-Feng-3
Keywords Active fault   Tunnel section type   Chain structure   Stress   Plastic strain     
Abstract: Using the finite-element method, this paper compares and studies the influence of lining section type on the stress and plastic strain of tunnels with chain-structures under active fault movement based on five three-centered circular sections of different invert radii from the Qipanshi tunnel project. The results show that: (1) the secondary lining is subjected to the combined action of tensioning, shearing, and squeezing due to fault movement; (2) high stress is mainly distributed at the arch spring with the peak stress on the hanging wall, and tensile force will be effectively absorbed by the shear crack; (3) with the tunnel section constantly tending toward a perfect circle, the maximum and minimum principal stresses and shear stress of the secondary lining decrease while the equivalent plastic stain increases.
Keywords Active fault,   Tunnel section type,   Chain structure,   Stress,   Plastic strain     
published: 2014-08-29
Cite this article:   
LIU Xue-Zeng-1, GU Xue-Ying-2, DAI Zhi-Ping-2 etc .Influence of Lining Section Type on a Tunnel Structure Under Active Fault Movement [J]  MODERN TUNNELLING TECHNOLOGY, 2014,V51(5): 71-77
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2014/V51/I5/71
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY