Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2015, Vol. 52 Issue (1) :127-135    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Analysis of the Influential Factors of and 3D Analytical Solution for Ground Deformation Induced by Shield Tunnelling
(Xiamen Rail Transit Group Limited Corporation, Xiamen 361001)
Download: PDF (1252KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In this paper, using a shield tunnel in water-rich sandy ground as the study object, a mechanical model of shield thrust is established, with a focus on five influential factors, i.e., front additional thrust, friction force between the cutterhead and soil mass, friction force between the shield shell and soil mass, ground loss, and synchronous grouting pressure at the shield tail. Based on the Mindlin solution, a 3D analytical solution to ground deformation, which considers the influence of synchronous grouting pressure and cutterhead friction force, these factors are derived and verified by in-situ monitoring data and numerical analytical results. Analytical results show that curve of transverse ground deformation by shield tunneling presents in a "V" shape and the curve of the longitudinal deformation is an "S" shape, the left and right sides of the ground deformation curves concerning the friction force between the cutterhead and soil mass are antisymmetric, and ground heaving may occur due to synchronous grouting pressure at the shield tail and can be effectively controlled in time by grouting under the appropriate grouting pressure. The results obtained from this study are reasonable and suitable for predicting ground deformation during shield tunnelling.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
JIANG An-Long
KeywordsShield tunnel   Mindlin solution   Ground deformation   3D analytical solution   Influential factors     
Abstract: In this paper, using a shield tunnel in water-rich sandy ground as the study object, a mechanical model of shield thrust is established, with a focus on five influential factors, i.e., front additional thrust, friction force between the cutterhead and soil mass, friction force between the shield shell and soil mass, ground loss, and synchronous grouting pressure at the shield tail. Based on the Mindlin solution, a 3D analytical solution to ground deformation, which considers the influence of synchronous grouting pressure and cutterhead friction force, these factors are derived and verified by in-situ monitoring data and numerical analytical results. Analytical results show that curve of transverse ground deformation by shield tunneling presents in a "V" shape and the curve of the longitudinal deformation is an "S" shape, the left and right sides of the ground deformation curves concerning the friction force between the cutterhead and soil mass are antisymmetric, and ground heaving may occur due to synchronous grouting pressure at the shield tail and can be effectively controlled in time by grouting under the appropriate grouting pressure. The results obtained from this study are reasonable and suitable for predicting ground deformation during shield tunnelling.
KeywordsShield tunnel,   Mindlin solution,   Ground deformation,   3D analytical solution,   Influential factors     
published: 2014-01-11
Cite this article:   
JIANG An-Long .Analysis of the Influential Factors of and 3D Analytical Solution for Ground Deformation Induced by Shield Tunnelling[J]  MODERN TUNNELLING TECHNOLOGY, 2015,V52(1): 127-135
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2015/V52/I1/127
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY