Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2015, Vol. 52 Issue (1) :136-142    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Prediction and Control Techniques for Building Settlement Induced by Large-Diameter EPB Shield Tunnelling
(1 School of Civil Engineering, Beijing Jiaotong University, Beijing 100044;2 Beijing Municipal Group, Beijing 100045;
3 Beijing Metro Construction Administration Co. Ltd., Beijing 100037)
Download: PDF (1009KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Based on the construction practice of a large-diameter EPB shield first adopted for Beijing Metro Line 14, the building settlement induced by shield tunneling is predictied by numerical simulation and a comparative analysis of predicted and measured data is carried out. The results show that: the settlement and inclination of buildings are within control standards and the design and construction scheme is feasible; the settlement at the shield tail is 30% to 50% of the maximum settlement and it is a critical factor to control; the grouting via the embedded pipes on the ground is an effective auxiliary measure to control settlement; the key points to control settlement during shield construction include improvement of the plastic flow properties of the soil mass, control of driving parameters, extracted muck volume, simultaneous grouting at the shield tail, and secondary grouting.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
SUN Chang-Jun-1
3
ZHANG Ding-Li-1
GUO Yu-Hai-2
MA Xiao-Wei-3
KeywordsLarge-diameter EPB shield   Settlement law   Control techniques   FLAC numerical simulation     
Abstract: Based on the construction practice of a large-diameter EPB shield first adopted for Beijing Metro Line 14, the building settlement induced by shield tunneling is predictied by numerical simulation and a comparative analysis of predicted and measured data is carried out. The results show that: the settlement and inclination of buildings are within control standards and the design and construction scheme is feasible; the settlement at the shield tail is 30% to 50% of the maximum settlement and it is a critical factor to control; the grouting via the embedded pipes on the ground is an effective auxiliary measure to control settlement; the key points to control settlement during shield construction include improvement of the plastic flow properties of the soil mass, control of driving parameters, extracted muck volume, simultaneous grouting at the shield tail, and secondary grouting.
KeywordsLarge-diameter EPB shield,   Settlement law,   Control techniques,   FLAC numerical simulation     
published: 2013-11-29
Cite this article:   
SUN Chang-Jun-1, 3 , ZHANG Ding-Li-1 etc .Prediction and Control Techniques for Building Settlement Induced by Large-Diameter EPB Shield Tunnelling[J]  MODERN TUNNELLING TECHNOLOGY, 2015,V52(1): 136-142
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2015/V52/I1/136
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY