Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2015, Vol. 52 Issue (3) :1-7    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study of Influential Factors and Measures for Low Carbonization During the Construction of Shield Tunnels
(1 Department of Geotechnical Engineering, School of Civil Engineering,Tongji University, Shanghai 200092; 2 Shanghai Tunnel Engineering Co. Ltd., Shanghai 200082)
Download: PDF (1023KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In tunnel engineering at present, carbon emissions are generally estimated during the planning design stage or obtained by statistics of total emissions after completion. However, the difference of carbon emissions in each ring and relevant influential factors are seldom considered. For this paper, based on the emission coefficient method, real-time statistics were determined regarding the in-situ energy consumption of the South Hongmei Road tunnel, and the actual carbon emissions per ring were obtained. Furthermore, the difference of the actual carbon emissions in each ring is analyzed and discussed by considering the parameters of stratum and construction. The results show that: 1) the average carbon emission per ring of shield tunnelling is about 56 t, with material-generated carbon emissions being around 93%, and for the studied case the carbon emission was reduced by approximately 12 000 t(corresponding to the total emissions produced by 200 rings) by means of depth grading and steel-bar reduction; 2) for construction-generated carbon emissions, shield tunnelling in the ⑦2 silty sand layer features high penetration resistance, high cutterhead torque, and highly damaging effects on the slurry, so its carbon emission per ring is about twice of that of the ⑤3 clayey silt layer, and the carbon emissions can be effectively reduced by avoiding a long-distance tunnel buried in the ⑦2 silty sand layer, while the shield advance distance and the buried depth have little effect; and 3) the carbon emissions generated by a one-day stop of shield driving is about 4 400 kg, it is therefore important to improve the advancing efficiency of the shield and to avoid long shield stoppages during tunnel construction. The daily average shield advance rate should be more than three rings—this can reduce the average emissions per ring by at least 60% compared with a one-ring advance rate per day.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
LI Qiao-Song-1
BAI Yun-1
LI Lin-2
KeywordsShield machine   Tunnelling   Carbon emissions   Emission coefficient method   Low carbonization     
Abstract: In tunnel engineering at present, carbon emissions are generally estimated during the planning design stage or obtained by statistics of total emissions after completion. However, the difference of carbon emissions in each ring and relevant influential factors are seldom considered. For this paper, based on the emission coefficient method, real-time statistics were determined regarding the in-situ energy consumption of the South Hongmei Road tunnel, and the actual carbon emissions per ring were obtained. Furthermore, the difference of the actual carbon emissions in each ring is analyzed and discussed by considering the parameters of stratum and construction. The results show that: 1) the average carbon emission per ring of shield tunnelling is about 56 t, with material-generated carbon emissions being around 93%, and for the studied case the carbon emission was reduced by approximately 12 000 t(corresponding to the total emissions produced by 200 rings) by means of depth grading and steel-bar reduction; 2) for construction-generated carbon emissions, shield tunnelling in the ⑦2 silty sand layer features high penetration resistance, high cutterhead torque, and highly damaging effects on the slurry, so its carbon emission per ring is about twice of that of the ⑤3 clayey silt layer, and the carbon emissions can be effectively reduced by avoiding a long-distance tunnel buried in the ⑦2 silty sand layer, while the shield advance distance and the buried depth have little effect; and 3) the carbon emissions generated by a one-day stop of shield driving is about 4 400 kg, it is therefore important to improve the advancing efficiency of the shield and to avoid long shield stoppages during tunnel construction. The daily average shield advance rate should be more than three rings—this can reduce the average emissions per ring by at least 60% compared with a one-ring advance rate per day.
KeywordsShield machine,   Tunnelling,   Carbon emissions,   Emission coefficient method,   Low carbonization     
published: 2014-10-11
Cite this article:   
LI Qiao-Song-1, BAI Yun-1, LI Lin-2 .Study of Influential Factors and Measures for Low Carbonization During the Construction of Shield Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2015,V52(3): 1-7
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2015/V52/I3/1
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY