Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2015, Vol. 52 Issue (3) :193-199    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
A Study of the Construction Sequences of a Large-Section Shallow-Buried Unsymmetrical Loading Tunnel by the CRD Method
(School of Civil Engineering, Central South University, Changsha 410075)
Download: PDF (969KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Using the Liangcun tunnel constructed with the CRD method as an example, the surrounding rock deformation and structural internal force characteristics are analyzed for tunnels constructed by the CRD method by installing deformation monitoring points and internal force testing elements. The surrounding rock displacement and stress variation under different excavation sequences are analyzed and compared by numerical simulation of the excavation process for a tunnel constructed using the CRD method. The results show that the CRD method has a great impact on the construction sequence of each construction part, while the magnitude of impact by each construction part on crown settlement are (from high to low): part one, part two, part three and part four. Rock pressure at the internal side of the mountain is larger than that at the outer side, and all the internal force of the steel brace is compressive stress with the maximum axial force located at the haunch. By comparing the deformation differences caused by tunnel excavation and the structural loading features, and based on a numerical analysis, it is concluded that first excavating a partial section at the outside of the mountain has great advantages in terms of surrounding rock deformation, structural stress and safety factors. Thus, the reasonable construction sequence is to first excavate the partial section outside of the mountain with primary support installation and then to excavate the other section inside of the mountain.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
SHI
XIONG
ZHANG Jia-Sheng
LIU Bao-Chen
KeywordsShallow-buried tunnel   CRD method   Deformation monitoring   Internal force test   Numerical simulation   Safety factor   Reasonable construction sequences     
Abstract: Using the Liangcun tunnel constructed with the CRD method as an example, the surrounding rock deformation and structural internal force characteristics are analyzed for tunnels constructed by the CRD method by installing deformation monitoring points and internal force testing elements. The surrounding rock displacement and stress variation under different excavation sequences are analyzed and compared by numerical simulation of the excavation process for a tunnel constructed using the CRD method. The results show that the CRD method has a great impact on the construction sequence of each construction part, while the magnitude of impact by each construction part on crown settlement are (from high to low): part one, part two, part three and part four. Rock pressure at the internal side of the mountain is larger than that at the outer side, and all the internal force of the steel brace is compressive stress with the maximum axial force located at the haunch. By comparing the deformation differences caused by tunnel excavation and the structural loading features, and based on a numerical analysis, it is concluded that first excavating a partial section at the outside of the mountain has great advantages in terms of surrounding rock deformation, structural stress and safety factors. Thus, the reasonable construction sequence is to first excavate the partial section outside of the mountain with primary support installation and then to excavate the other section inside of the mountain.
KeywordsShallow-buried tunnel,   CRD method,   Deformation monitoring,   Internal force test,   Numerical simulation,   Safety factor,   Reasonable construction sequences     
published: 2013-12-29
Cite this article:   
SHI , XIONG , ZHANG Jia-Sheng etc .A Study of the Construction Sequences of a Large-Section Shallow-Buried Unsymmetrical Loading Tunnel by the CRD Method[J]  MODERN TUNNELLING TECHNOLOGY, 2015,V52(3): 193-199
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2015/V52/I3/193
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY