Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2017, Vol. 54 Issue (3) :120-125    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Characteristics of Ground Deformation Induced by Large-Diameter Slurry Shield Construction
(1 Tunnel and Underground Engineering Research Center of Ministry of Education, Beijing Jiaotong University, Beijing 100044; 2Beijing Urban Construction Group Co. Ltd., Beijing 100088; 3 Beijing Urban Construction Design & Development Group Co. Ltd.,Beijing 100037; 4 CCCC Highway Consultants Co. Ltd., Beijing 100088)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Based on the large-diameter (?14.5 m) double-tube river-passing shield tunnel at Weisalu of Nanjing city and on-site monitoring data acquired there, the process and distribution law of surface deformation induced by the construction of a large-diameter slurry shield in sand and sandy cobble strata was studied. The results indicate that vertical surface deformation of the shield tunnel includes four stages: heaving, rapid settlement, slow settlement and stabilization. Surface deformation of single-tube tunnel construction can be described by the Peck formula, with an average Vl value of 1.856% and K value of 0.423 by fitting a unimodel shape; Surface deformation of the doubletube tunnel is of a bimodal asymmetrical shape since the later tunnel construction causes the maximum surface settlement and the trough width to increase, thus the trough shape is changed. Surface deformation of the double-line tunnel can be described by a double Peck formula, and there is no obvious correlation between the K value and the number of tunnels and the construction history, and the Vl value is related to the construction method, quality management and construction procedure.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsShield construction   Ground deformation   Peck formula     
Abstract: Based on the large-diameter (?14.5 m) double-tube river-passing shield tunnel at Weisalu of Nanjing city and on-site monitoring data acquired there, the process and distribution law of surface deformation induced by the construction of a large-diameter slurry shield in sand and sandy cobble strata was studied. The results indicate that vertical surface deformation of the shield tunnel includes four stages: heaving, rapid settlement, slow settlement and stabilization. Surface deformation of single-tube tunnel construction can be described by the Peck formula, with an average Vl value of 1.856% and K value of 0.423 by fitting a unimodel shape; Surface deformation of the doubletube tunnel is of a bimodal asymmetrical shape since the later tunnel construction causes the maximum surface settlement and the trough width to increase, thus the trough shape is changed. Surface deformation of the double-line tunnel can be described by a double Peck formula, and there is no obvious correlation between the K value and the number of tunnels and the construction history, and the Vl value is related to the construction method, quality management and construction procedure.
KeywordsShield construction,   Ground deformation,   Peck formula     
Cite this article:   
.Characteristics of Ground Deformation Induced by Large-Diameter Slurry Shield Construction[J]  MODERN TUNNELLING TECHNOLOGY, 2017,V54(3): 120-125
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2017/V54/I3/120
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY