Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2017, Vol. 54 Issue (3) :135-141    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Local Dynamic Response of a Masonry Structure to the Vibrations of Tunnel Blasting
(1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033; 2 Hebei Research Institute of Construction & Geotechnical Investigation Co. Ltd., Shijiazhuang 050031; 3 Hebei Research Center of Geotechnical Engineering Technology of Province, Shijiazhuang 050031; 4 School of Civil Engineering, Beijing Jiaotong University, Beijing 100044; 5 School of Civil Engineering, Tsinghua University, Beijing 100084; 6 Beijing No.2 Municipal Construction Engineering Ltd. Corp., Beijing 100037)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Based on the New Hongyan tunnel of the Chengdu- Chongqing Passenger Dedicated Line, a typical blasting vibration wave and a two-layer masonry structure were selected to analyze the low-order integrated mode and high-order local mode of the masonry structure. The characteristics of displacement and the stress response of the structure to vibrations during tunnel blasting were studied using the modal displacement superposition method.The distribution and variation of the principal tensile stress of brick walls under different particle peak velocities were calculated. The results show that for a typical two-layer masonry structure, the first five stages are of a low-or?der integrated mode with natural frequencies in the range of 8.80~24.86 Hz and vibration modes that are integrated uniform deformations, while the 6th to 20th stages are of a high-order local dense mode with natural frequencies in the range of 25.96~36.14 Hz and local deformations that are significantly larger than the integrated deformations;the structural displacement induced by high-frequency vibration modals is very small, but the internal force response of local elements are much larger than the displacement since the modal amplitude vector of the internal force calculation is multiplied by the square of the modal frequency; the structure dynamic damage induced by the tunnel blasting vibration is mainly controlled by the instantaneous high stress rather than the displacement; and under intense vibrations, tensile stresses are high at the brick doors, window corners, contact areas of brick and concrete elements with a stress concentration, parapet wall, side-walls, partition walls and balconies and this is where damage often occurs.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsTunnel blasting   High- frequency vibration   Masonry structure   Dynamic response   High- order local modal   Stress damage     
Abstract: Based on the New Hongyan tunnel of the Chengdu- Chongqing Passenger Dedicated Line, a typical blasting vibration wave and a two-layer masonry structure were selected to analyze the low-order integrated mode and high-order local mode of the masonry structure. The characteristics of displacement and the stress response of the structure to vibrations during tunnel blasting were studied using the modal displacement superposition method.The distribution and variation of the principal tensile stress of brick walls under different particle peak velocities were calculated. The results show that for a typical two-layer masonry structure, the first five stages are of a low-or?der integrated mode with natural frequencies in the range of 8.80~24.86 Hz and vibration modes that are integrated uniform deformations, while the 6th to 20th stages are of a high-order local dense mode with natural frequencies in the range of 25.96~36.14 Hz and local deformations that are significantly larger than the integrated deformations;the structural displacement induced by high-frequency vibration modals is very small, but the internal force response of local elements are much larger than the displacement since the modal amplitude vector of the internal force calculation is multiplied by the square of the modal frequency; the structure dynamic damage induced by the tunnel blasting vibration is mainly controlled by the instantaneous high stress rather than the displacement; and under intense vibrations, tensile stresses are high at the brick doors, window corners, contact areas of brick and concrete elements with a stress concentration, parapet wall, side-walls, partition walls and balconies and this is where damage often occurs.
KeywordsTunnel blasting,   High- frequency vibration,   Masonry structure,   Dynamic response,   High- order local modal,   Stress damage     
Cite this article:   
.Local Dynamic Response of a Masonry Structure to the Vibrations of Tunnel Blasting[J]  MODERN TUNNELLING TECHNOLOGY, 2017,V54(3): 135-141
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2017/V54/I3/135
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] YANG Shaoyu1 WANG Xiaotian2 ZHANG Peiyuan1 LIU Shengchen1 LI Shuchen2 LI Luoning2.A Review of Spray-applied Waterproofing Membrane Technology for Drill-and-Blast Tunnels [J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 1-14
[4] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[5] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[6] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[7] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[8] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[9] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[10] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[11] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[12] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[13] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[14] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[15] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY