Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2017, Vol. 54 Issue (5) :93-100    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Analysis of the Vibration Responses of High-Speed Railway Tunnels Based on Damage Theory
(1 School of Civil Engineering and Architecture, Central South University, Changsha410075; 2 Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650024)
Download: PDF (2744KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Based on the known Mazars and Loland damage models, an elastic-plastic damage constitutive model for concrete is developed by introducing a damage variable to the Drucker-Prager yield function. Using the interface of the finite-difference software FLAC5.0, secondary development is carried out to program the proposed damage constitutive model. The dynamic vibration response of a high-speed railway tunnel on the Wuhan-Guangzhou Passenger Dedicated Line is calculated using the secondary developed damage model, which quantifies the damage of tunnel linings and lays a foundation for the analysis of fatigue lifetime prediction and a durability evaluation of highspeed railway tunnel structures. The results show that:1) the settlements at the tunnel floor and the peripheral deformations induced by the vibration load of the train are less than 4 mm; 2) the main adverse effect caused by train loading is an increase of tensile stress of the tunnel lining; 3) the maximum damage to the tunnel appears on the invert facing the surrounding soils; and 4) a vibration-induced stress wave attenuates very quickly in the tunnel lining structure and vibrations caused by train loading influence local parts of the tunnel floor.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsHigh-speed railway tunnel   Damage constitutive model   Vibration response   Secondary development     
Abstract: Based on the known Mazars and Loland damage models, an elastic-plastic damage constitutive model for concrete is developed by introducing a damage variable to the Drucker-Prager yield function. Using the interface of the finite-difference software FLAC5.0, secondary development is carried out to program the proposed damage constitutive model. The dynamic vibration response of a high-speed railway tunnel on the Wuhan-Guangzhou Passenger Dedicated Line is calculated using the secondary developed damage model, which quantifies the damage of tunnel linings and lays a foundation for the analysis of fatigue lifetime prediction and a durability evaluation of highspeed railway tunnel structures. The results show that:1) the settlements at the tunnel floor and the peripheral deformations induced by the vibration load of the train are less than 4 mm; 2) the main adverse effect caused by train loading is an increase of tensile stress of the tunnel lining; 3) the maximum damage to the tunnel appears on the invert facing the surrounding soils; and 4) a vibration-induced stress wave attenuates very quickly in the tunnel lining structure and vibrations caused by train loading influence local parts of the tunnel floor.
KeywordsHigh-speed railway tunnel,   Damage constitutive model,   Vibration response,   Secondary development     
Cite this article:   
.Analysis of the Vibration Responses of High-Speed Railway Tunnels Based on Damage Theory[J]  MODERN TUNNELLING TECHNOLOGY, 2017,V54(5): 93-100
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2017/V54/I5/93
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY