Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2018, Vol. 55 Issue (1) :184-193    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Disturbance Mechanism of Deep-Hole Grouting for Shallow Metro Tunnels in Water-Rich Sand Layers
(1 Jinan Rail Transit Group Co. Ltd., Jinan 250101; 2 CCCC Highway Consultants Co. Ltd. (HPDI), Beijing 100088; 3 School of Environmental Science and Engineering, Ocean University of China, Qingdao 266100; 4 Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266100)
Download: PDF (4593KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Regarding the deep-hole grouting reinforcement measures for sand gushing and water inflow during con? struction of a Qingdao metro tunnel passing through a water-rich sand layer, the disturbance mechanism of deephole grouting reinforcement for construction of metro tunnels under these conditions is studied by FLAC3D numerical calculation and site measurement. Grouting depth and pressure should be determined properly since they have a significant effect on ground disturbance and deformation, and a grouting pressure of 1.4~1.5 MPa should be used for the water-rich sand layer in Qingdao. When the ground surface keeps heaving, the surface above the double-tube tunnel heaves in an "M" shape, the grouting pressure at the tunnel′s central line has an obvious effect on ground disturbance, and the maximum heaving occurs at the tunnel crown. The ground surface heaves rapidly at the early stage of grouting and subsides quickly when the working face is within a scope of -3D in front of the monitoring section, then the ground settlement slows down within a scope of -2D and gets faster within the scope of 1D after it passes through the monitoring section, finally it tends to be stable. The effects of grouting construction on a building is less compared to that of surface uplifting, and a building above the tunnel deforms in a positive curvature with the occurrence of ground deformation in an "M" shape; a reversed splayed crack occurs at the building wall when the building structure is damaged. Additionally, crown settlement and clearance convergence are fast when working face passes through the monitoring section and tend to decrease when it is within 2D scope away from the monitoring section,then stabilizes gradually within a scope of 3D.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsWater-rich sand layer   Shallow-buried metro tunnel   Deep-hole grouting   Disturbance mechanism     
Abstract: Regarding the deep-hole grouting reinforcement measures for sand gushing and water inflow during con? struction of a Qingdao metro tunnel passing through a water-rich sand layer, the disturbance mechanism of deephole grouting reinforcement for construction of metro tunnels under these conditions is studied by FLAC3D numerical calculation and site measurement. Grouting depth and pressure should be determined properly since they have a significant effect on ground disturbance and deformation, and a grouting pressure of 1.4~1.5 MPa should be used for the water-rich sand layer in Qingdao. When the ground surface keeps heaving, the surface above the double-tube tunnel heaves in an "M" shape, the grouting pressure at the tunnel′s central line has an obvious effect on ground disturbance, and the maximum heaving occurs at the tunnel crown. The ground surface heaves rapidly at the early stage of grouting and subsides quickly when the working face is within a scope of -3D in front of the monitoring section, then the ground settlement slows down within a scope of -2D and gets faster within the scope of 1D after it passes through the monitoring section, finally it tends to be stable. The effects of grouting construction on a building is less compared to that of surface uplifting, and a building above the tunnel deforms in a positive curvature with the occurrence of ground deformation in an "M" shape; a reversed splayed crack occurs at the building wall when the building structure is damaged. Additionally, crown settlement and clearance convergence are fast when working face passes through the monitoring section and tend to decrease when it is within 2D scope away from the monitoring section,then stabilizes gradually within a scope of 3D.
KeywordsWater-rich sand layer,   Shallow-buried metro tunnel,   Deep-hole grouting,   Disturbance mechanism     
Cite this article:   
.Disturbance Mechanism of Deep-Hole Grouting for Shallow Metro Tunnels in Water-Rich Sand Layers[J]  MODERN TUNNELLING TECHNOLOGY, 2018,V55(1): 184-193
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2018/V55/I1/184
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY