Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2019, Vol. 56 Issue (2) :119-122    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on Orientation Effective Factor of Two-dimensional Steel Fiber Reinforced Concrete Based on the Probability Theory
(1 School of Resources & Civil Engineering, Northeastern University, Shenyang 110819; 2 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031)
Download: PDF (794KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Steel fiber reinforced concrete is a kind of multiphase heterogeneous composite material, therefore its constitutive relations are very complex and the effects of orientation, length of fibers and bonding behavior of the interface between fibers and matrix on material strength should be considered. Due to the random distribution of steel fibers, it is difficult to measure its orientation; the orientation effective coefficient of steel fibers in 2-dimension was deduced in a perspective of random variable on the basis of a composite mechanical constitutive model. Assuming the distribution of steel fibers obeys the two-dimensional uniform distribution, the distribution function of the angle θ between steel fibers and force direction was calculated using probability theory, and the expectation of cosθ, i.e.orientation effective coefficient, was calculated. The results show that the probability of steel fiber intersecting with section is 1/π within the studied area and theoretically the orientation effective coefficient is 0.25, while the actual orientation effective coefficient should be slightly smaller than 0.25 due to the boundary effect and gravitation effect.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
Van-Tuan NGUYEN1
2 LI Guhua2 LIU Tongchao2 WANG Shuhong1
KeywordsSteel fiber reinforced concrete   Orientation effective coefficient   Probability theory   Radom variables     
Abstract: Steel fiber reinforced concrete is a kind of multiphase heterogeneous composite material, therefore its constitutive relations are very complex and the effects of orientation, length of fibers and bonding behavior of the interface between fibers and matrix on material strength should be considered. Due to the random distribution of steel fibers, it is difficult to measure its orientation; the orientation effective coefficient of steel fibers in 2-dimension was deduced in a perspective of random variable on the basis of a composite mechanical constitutive model. Assuming the distribution of steel fibers obeys the two-dimensional uniform distribution, the distribution function of the angle θ between steel fibers and force direction was calculated using probability theory, and the expectation of cosθ, i.e.orientation effective coefficient, was calculated. The results show that the probability of steel fiber intersecting with section is 1/π within the studied area and theoretically the orientation effective coefficient is 0.25, while the actual orientation effective coefficient should be slightly smaller than 0.25 due to the boundary effect and gravitation effect.
KeywordsSteel fiber reinforced concrete,   Orientation effective coefficient,   Probability theory,   Radom variables     
Cite this article:   
Van-Tuan NGUYEN1, 2 LI Guhua2 LIU Tongchao2 WANG Shuhong1 .Study on Orientation Effective Factor of Two-dimensional Steel Fiber Reinforced Concrete Based on the Probability Theory[J]  MODERN TUNNELLING TECHNOLOGY, 2019,V56(2): 119-122
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2019/V56/I2/119
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY