[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2025, Vol. 62 Issue (5) :109-    DOI:
绿色智能建造 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
基于无人机的悬臂掘进机隧道掌子面围岩破碎程度智能识别与量化方法研究
(1.同济大学 岩土及地下工程教育部重点实验室,上海 200092; 2.同济大学地下建筑与工程系,
上海 200092; 3.中铁二院昆明勘察设计研究院有限责任公司,昆明 650200;
4.中国铁路昆明局集团有限公司,昆明 650011)
Intelligent Recognition and Quantification of Rock Fragmentation #br# at the Tunnel Face Using UAV-based Methods for Roadheader Excavation
(1. Key Laboratory of Geotechnical and Underground Engineering of Education Ministry, Tongji University, Shanghai 200092;
2. Department of Geotechnical Engineering College of Civil Engineering, Tongji University, Shanghai 200092;
3. Kunming Survey, Design and Research Institute Co., Ltd. of CREEC, Kunming 650200;
4. China Railway Kunming Group Co., Ltd, Kunming 650011)
Download: PDF (4337KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为降低悬臂掘进机隧道施工扬尘对掌子面观测的干扰,并避免人工评估岩体状态存在的主观性,提出一种融合无人机自主巡检与计算机视觉技术的掌子面围岩破碎程度智能识别方法。首先,基于Fast-Planner算法实现无人机自主避障与路径规划,在云南某高铁隧道施工现场连续采集100个掘进循环段共412张高清RGB掌子面图像;然后,采用Unet++算法提取图像特征,结合核密度估计法拟合掌子面破碎比k的概率分布,得到其主要密度峰值位于0.11附近;最后,根据k制定悬臂掘进机施工掌子面可掘性进尺分析表。结果表明,该方法对围岩特征的提取准确率达83.2%,显著优于传统人工评估,可为隧道施工的安全高效、无人化智能评估提供可行途径。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
黄飞棚1
2 郭永发3 丁文云3 施 宇 4 薛亚东 1
2 郑朝晖 1
2
关键词悬臂掘进机   无人机   计算机视觉   Unet++   核密度估计     
Abstract: To mitigate the interference of construction dust on tunnel face observation during roadheader excavation and eliminate the subjectivity associated with manual rock mass assessment, an intelligent recognition method is proposed for quantifying rock fragmentation at the tunnel face by integrating unmanned aerial vehicle (UAV) autonomous inspection with computer vision techniques. First, the Fast-Planner algorithm is employed to achieve UAV autonomous obstacle avoidance and path planning, enabling continuous acquisition of 412 high-resolution RGB images from 100 excavation cycles at a high-speed railway tunnel construction site in Yunnan Province. Then, a U-Net++ network is used for feature extraction, and kernel density estimation is applied to fit the probability distribution of the fragmentation ratio k, showing that the main density peak is located near 0.11. Finally, a cuttability evaluation table for roadheader excavation is developed based on the value of k. The results show that the proposed method achieves an 83.2% accuracy in extracting rock mass features, significantly outperforming traditional manual assessment and providing a feasible solution for safe, efficient, and intelligent tunnel construction evaluation.
KeywordsRoadheader,   Unmanned aerial vehicle (UAV),   Computer vision,   U-Net++,   Kernel density estimation     
基金资助:南科技厅重点研发计划(202303AA080003).
作者简介: 黄飞棚(1999-),男,硕士研究生,主要从事隧道施工与运维视觉检测方面的研究工作,E-mail: 2330717@tongji.edu.cn.
引用本文:   
黄飞棚1, 2 郭永发3 丁文云3 施 宇 4 薛亚东 1, 2 郑朝晖 1等 .基于无人机的悬臂掘进机隧道掌子面围岩破碎程度智能识别与量化方法研究[J]  现代隧道技术, 2025,V62(5): 109-
HUNAG Feipeng1, 2 GUO Yongfa3 DING Wenyun3 SHI Yu4 XUE Yadong1, 2 ZHENG Zhaohui1 etc .Intelligent Recognition and Quantification of Rock Fragmentation #br# at the Tunnel Face Using UAV-based Methods for Roadheader Excavation[J]  MODERN TUNNELLING TECHNOLOGY, 2025,V62(5): 109-
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2025/V62/I5/109
 
没有本文参考文献
Copyright 2010 by 现代隧道技术