[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2021, Vol. 58 Issue (4) :12-20    DOI:
研究与探讨 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
高水压作用下深埋隧道双层叠合衬砌稳定性影响因素研究
(中铁第六勘察设计院集团有限公司,天津 300308)
Study on Factors Affecting the Stability of Double-Layer Superimposed Lining#br# in Deep-Buried Tunnels under the Action of High Water Pressure #br#
(China Railway Liuyuan Group Co., Ltd., Tianjin 300308)
Download: PDF (3475KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要      随着国民生态资源保护意识的逐渐增强,结构工程师对全封堵防水设计的呼声也越来越高,高水压隧道防水形式逐渐由“主排”向“全防”转变,结构模筑时不得不面临大体积混凝土施工难的困境;“双层叠合衬砌”方案即是通过“拆分”的方式削减结构厚度,可有效缓解水泥水化热在结构内部产生的有害变形,增强大体积混凝土结构的可实施性和可操作性,同时还能兼顾提高隧道的防水质量和效果。文章以青岛地铁1号线过海区间为工程背景,采用ANSYS有限元分析软件,对双层叠合衬砌的稳定性影响因素进行研究,结果表明:(1)考虑衬砌间防水层的影响,结合面接触力学行为仅考虑径向弹簧压缩刚度即可,可忽略切向弹簧剪切刚度的影响;(2)当结合面径向弹簧刚度与两侧结构弹性模量等数量级时,安全系数曲线走势基本收敛,结构发生破坏的顺序依次是内层衬砌仰拱、内层衬砌拱脚、外层衬砌仰拱、外层衬砌拱脚、内层衬砌拱顶、外层衬砌拱顶;(3)围岩基床系数越高,叠合结构安全系数越大,设计与施工过程中应注意提高劣质围岩、维持优质围岩的基床系数;(4)叠合结构安全系数随着各层衬砌刚度的增加而增大,内层衬砌结构具有提高、改善外层衬砌结构安全性的作用。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
王文娟 高 鑫
关键词:   
Abstract: With the gradual increase in awareness of ecological resources protection, the waterproofing type of tun? nels under high water pressure has also been gradually shifting from the "mainly draining" to "fully waterproofing",so resulting in difficulties in mass concrete construction. In view of this, the "double-layer superimposed lining" solution is proposed to reduce the thickness of the structure by "splitting", which can effectively mitigate harmful deformations caused by the cement hydration heat in the structure, and enhance the implementability and operability of mass concrete structure construction, while also improve the quality and effectiveness of tunnel waterproofing.Taking the sea-crossing tunnel section of the Qingdao Metro Line 1 as the engineering background, this paper conducts research of the factors affecting the stability of double-layer superimposed lining by the finite element analysis software ANSYS, and the conclusions are drawn as follows: 1) due to the waterproofing layer between linings, only the radial compression stiffness of the spring can be considered in terms of contact mechanics behaviors of the lining bonding surface, while ignoring the impact of tangential shear stiffness of the spring; 2) when the radial spring stiffness of the bonding surface is of equal order of magnitude to the elastic modulus of the structure at both sides, the safety coefficient curve basically tends to converge, and the structural failure sequences are in the order of the inner lining inverted arch, inner lining arch foot, outer lining inverted arch, outer lining arch foot, inner lining arch vault,outer lining arch vault; 3) the higher the subgrade reaction coefficient of the surrounding rock is, the greater the safety coefficient of the superimposed structure will be, and so attention should be paid to improving the subgrade reaction coefficient of poor surrounding rocks and maintaining that of good surrounding rocks during the design and construction process; 4) the safety coefficient of the superimposed structure increases with the increase of the stiffness of each lining layer, and the inner lining structure has the effect of increasing and improving the safety of the outer lining structure.
KeywordsHigh water pressure,   Superimposed lining,   Spring stiffness,   Subgrade reaction coefficient,   Concrete strength grade,   Safety coefficient     
作者简介: 王文娟(1987-),女,硕士,工程师,主要从事地铁隧道方面的设计与研究工作,E-mail:1090040361@qq.com
引用本文:   
王文娟 高 鑫 .高水压作用下深埋隧道双层叠合衬砌稳定性影响因素研究[J]  现代隧道技术, 2021,V58(4): 12-20
WANG Wenjuan GAO Xin .Study on Factors Affecting the Stability of Double-Layer Superimposed Lining#br# in Deep-Buried Tunnels under the Action of High Water Pressure #br#[J]  MODERN TUNNELLING TECHNOLOGY, 2021,V58(4): 12-20
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2021/V58/I4/12
 
没有本文参考文献
[1] 王志杰 1 李金宜 1 蒋新政 1 李 振 1 曾 青 2 王 宁 2.浅埋偏压双侧近接隧道影响分区及对策研究[J]. 现代隧道技术, 2021,58(4): 1-11
[2] 于 丽 1,2 孙 源 1,2 王明年 1,2.寒区隧道抗冻设防长度的计算方法研究[J]. 现代隧道技术, 2021,58(4): 21-28
[3] 秦尚友 1 陈佳耀 2 张东明 2 杨同军 1 黄宏伟 2 赵 帅 2.基于深度学习的隧道工作面岩石结构自动化判别[J]. 现代隧道技术, 2021,58(4): 29-36
[4] 李鹏举 1 郑方坤 2 吕建兵 3 吴维俊 3 刘 锋 3 陈贡发 3.基于大数据迁移学习的灰岩地区排水孔淤堵自动识别技术[J]. 现代隧道技术, 2021,58(4): 37-47
[5] 宋福彬 1 杨 杰 1 程 琳 1 吕 高 1, 2 宋 洋 1.地质雷达正演在隧洞衬砌病害识别中的应用[J]. 现代隧道技术, 2021,58(4): 48-56
[6] 翟 强 顾伟红 荆肇秦.地铁联络通道冻结法施工安全风险评价[J]. 现代隧道技术, 2021,58(4): 57-66
[7] 叶 飞 1 何 彪 1 田崇明 1 王思宇 1 王 坚 1 宋桂锋 2.三乙醇胺早强剂研究进展及在隧道工程中的应用展望[J]. 现代隧道技术, 2021,58(4): 67-78
[8] 谢 军 1,2 倪雅静 2 胡英飞 2 包淑贤 2 李延涛 1.振动台试验模型箱的研究进展[J]. 现代隧道技术, 2021,58(4): 79-85
[9] 惠 强 1 张 军 2 姜海波 1.深埋高地应力水工隧洞节理岩体开挖塑性区特征及分布规律研究[J]. 现代隧道技术, 2021,58(4): 86-94
[10] 张莉莉 1 郎松军 1 邓 林 2 臧 程 3.季冻区隧道砂岩三轴压缩力学特性及损伤本构模型研究[J]. 现代隧道技术, 2021,58(4): 95-103
[11] 李心熙 1 禹海涛 2 李春元 3 于晓东 4 徐 磊 5.沉管隧道暗埋段三维大规模地震响应分析[J]. 现代隧道技术, 2021,58(4): 104-108
[12] 冯 义.基于动荷载的交叠盾构隧道两阶段安全分析[J]. 现代隧道技术, 2021,58(4): 109-116
[13] 王 博 1 郑鹏飞 1 胡江洋 1 刘军勇 1 刘 硕 2.近距离平行盾构隧道施工数值模拟及影响因素分析[J]. 现代隧道技术, 2021,58(4): 117-124
[14] 张 宏 1,2 刘海洋 1,3.地铁隧道盾构掘进对上跨地道基坑稳定性影响研究[J]. 现代隧道技术, 2021,58(4): 125-132
[15] 鄢豪杰 郑俊杰 潘 雨 陈鹏飞.盾构隧道开挖引起邻近桩基响应的时空效应[J]. 现代隧道技术, 2021,58(4): 133-140
Copyright 2010 by 现代隧道技术