[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2023, Vol. 60 Issue (1) :209-218    DOI:
试验与监测 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
软土地层小半径盾构隧道下穿在建高铁地基加固效果研究
(1.兰州交通大学土木工程学院,兰州 730000;2.中铁十八局集团市政工程有限公司,天津 300000)
Research on the Effect of Foundation Reinforcement of Small-radius Shield Tunnels in Soft Soil Stratum Crossing under High-speed Rail under Construction
(1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730000; 2. Municipal Engineering Company Limited, China Railway 18th Bureau Group Corporation Limited, Tianjin 300000)
Download: PDF (5914KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 以福州地铁5号线盾构下穿在建福厦高铁为工程背景,针对软土地层小半径曲线盾构隧道下穿高铁高填方路基交叉施工工程的特殊性,利用现场监测数据对交叉施工全过程展开分析,研究该类工程地基加固效果及施工变形规律。结果表明,该工程若采用预应力混凝土管桩进行地基加固,后期地铁盾构施工不具备施工条件,需施作桩板结构进行地基处理;采用桩板结构对软土区域进行加固处理后,实测数据中最大地表沉降量为5.6 mm,为地表沉降控制值的18.67%,在可控范围内;提前进行地基加固后,当盾构隧道下穿施工时,路基不同位置处仅发生微小沉降,说明桩板结构加固对交叉施工变形有很好的控制效果;随着路基填筑高度增大,各层土压力值整体呈增大趋势,各层土压力变化速率呈“双峰曲线”,路基中间位置的土压力值比靠近两侧的土压力值大;盾构隧道下穿前,桩板结构混凝土支撑轴力的变化大致可分为“线性增长—过渡—再增长—稳定”4个阶段,当盾构下穿后,混凝土支撑轴力有小幅增大,后期逐渐趋于稳定。从监测数据分析可以看出,桩板结构的加固效果显著。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
曹小平 1 韦志凯 1 卢洪强 2 牟 晶 2 符小林 2 李志超 2
关键词盾构隧道   高速铁路   软土地层   桩板结构   交叉施工     
Abstract: Taking as a research case the shield tunnel of Line 5 of the Fuzhou Metro crossing under the Fuzhou-Xia? men High-speed Railway (under construction), the on-site monitoring data were used to analyze the full process of Crossing construction according to the characteristics of the small-diameter curved shield tunnel in a soft soil stratum crossing under the high-fill subgrade of high-speed rail, so as to research the effect of foundation reinforcement of such projects and the law of construction deformation. The results show that if prestressed concrete pipe piles are used for foundation reinforcement of this project and construction conditions are not available in the metro shield construction at a later stage, the pile-slab structure should be constructed for foundation treatment; after the pileslab structure is used for reinforcement in the soft soil area, the maximum ground settlement is 5.6 mm in the measured data, accounting for 18.67% of the ground settlement control value, which is in the controllable range; after foundation reinforcement is conducted in advance, only slight settlement occurs in different positions of the subgrade in case of undercrossing construction of the shield tunnel, indicating that the reinforcement of pile-slab structure has a very good effect on controlling crossing construction deformation; as the subgrade filling height increases,the soil pressure value of each layer shows an overall increase, and the rate of change in the soil pressure of each layer shows the "bimodal curve" and the soil pressure value in the middle of the subgrade is higher than that close to both sides; before the shield tunnel crosses under the high-speed rail, the change in the axial force of concrete support of the pile-slab structure is roughly split into 4 stages: "linear growth - transition - regrowth - stability", and after the shield tunnel crosses, the axial force of concrete support slightly increases and gradually becomes stable at a later stage. It can be seen from the analysis of monitoring data that the reinforcement effect of pile-slab structure is significant.
KeywordsShield tunnel,   High-speed railway,   Soft soil stratum,   Pile-slab structure,   Crossing construction     
基金资助:国家自然基金地区科学基金项目(52168070,52068044,51968041);甘肃省科技计划资助项目(22JR5RA330)
作者简介: 曹小平(1971-),男,博士,教授,主要从事隧道及地下工程施工技术和数值计算方面的教学和科研工作,E-mail:caoxp@mail.lzjtu.cn.
引用本文:   
曹小平 1 韦志凯 1 卢洪强 2 牟 晶 2 符小林 2 李志超 2 .软土地层小半径盾构隧道下穿在建高铁地基加固效果研究[J]  现代隧道技术, 2023,V60(1): 209-218
CAO Xiaoping1 WEI Zhikai1 LU Hongqiang2 MOU Jing2 FU Xiaolin2 LI Zhichao2 .Research on the Effect of Foundation Reinforcement of Small-radius Shield Tunnels in Soft Soil Stratum Crossing under High-speed Rail under Construction[J]  MODERN TUNNELLING TECHNOLOGY, 2023,V60(1): 209-218
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2023/V60/I1/209
 
没有本文参考文献
[1] 张小龙.桩基荷载作用下地铁盾构隧道结构力学响应分析[J]. 现代隧道技术, 2025,62(4): 82-89
[2] 郭永军1 李 超2 郑建国3 于永堂4 朱才辉5.地面堆载对西安黄土地层中既有盾构管片影响研究[J]. 现代隧道技术, 2025,62(4): 61-72
[3] 周弋力1 封 坤1 郭文琦1 张亮亮2 李春林3.超大直径盾构隧道管片纵缝抗弯力学行为与损伤过程研究[J]. 现代隧道技术, 2025,62(4): 163-173
[4] 易 丹1 薛皓匀2 杨绍毅2 喻 波1 封 坤2 林 刚1.盾构隧道管片结构螺栓失效对横向地震响应的影响分析[J]. 现代隧道技术, 2025,62(4): 174-181
[5] 贾永刚1 郝子晗1 鲁卫东1 吴 帆1 阳卫卫2.钢纤维混凝土管片不同接头型式力学性能研究[J]. 现代隧道技术, 2025,62(4): 182-196
[6] 谭鑫雨1 韦 猛1,2 兰灵申1 尚 强1 张海涛1.盾构刀盘结泥饼土体降黏附试验与机理研究[J]. 现代隧道技术, 2025,62(4): 219-229
[7] 刘朋飞1,2 曾德星2 王 霄3 杨 钊2 李 钰2.盾构泥饼分解剂作用效果评价试验及应用研究[J]. 现代隧道技术, 2025,62(4): 230-237
[8] 胡云进1,,2,3 朱铭伟1,2,3 郜会彩1,2,3 任智豪1,2,3.地下水渗流对能源盾构隧道换热性能的影响[J]. 现代隧道技术, 2025,62(3): 50-59
[9] 李瀚源1,2 冯 劲1 郭洪雨1 谢雄耀2 周红升1 孙 飞1.海底盾构隧道双层衬砌结构联合承载力学特性研究[J]. 现代隧道技术, 2025,62(3): 126-138
[10] 张昕阳1,2 申玉生1,2 常铭宇1,2 刘 童1,2 孙天赦3,4 胡 帅3,4.克泥效工法对泥岩地层盾构隧道地表变形控制规律研究[J]. 现代隧道技术, 2025,62(2): 283-290
[11] 于同生1,2 官林星3 闫治国1,2.地铁盾构隧道多灾害场景及结构多灾害响应研究综述[J]. 现代隧道技术, 2025,62(2): 16-26
[12] 朱叶艇1,2 朱雁飞1 王志华1,3 王帅峰4 王 浩1 马志刚1 龚 卫1,2 秦 元1.推力矢量智控盾构的理论创新、方法实现与工程验证[J]. 现代隧道技术, 2025,62(2): 71-78
[13] 肖明清1 封 坤2 薛光桥1 王运超2 鲁志鹏1 陈 龙2.软土地层盾构姿态偏移引起的附加土压力影响因素研究[J]. 现代隧道技术, 2025,62(2): 141-150
[14] 姚占虎1 杨 琴2 李 辉2 魏代伟2 孟 佳2.盾构隧道同步双液注浆技术研究与应用[J]. 现代隧道技术, 2025,62(2): 265-273
[15] 蔡浩明.基岩爆破预处理对盾构掘进状态及岩体破碎机理的影响[J]. 现代隧道技术, 2025,62(1): 192-200
Copyright 2010 by 现代隧道技术