[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2023, Vol. 60 Issue (1) :209-218    DOI:
试验与监测 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | >>
软土地层小半径盾构隧道下穿在建高铁地基加固效果研究
(1.兰州交通大学土木工程学院,兰州 730000;2.中铁十八局集团市政工程有限公司,天津 300000)
Research on the Effect of Foundation Reinforcement of Small-radius Shield Tunnels in Soft Soil Stratum Crossing under High-speed Rail under Construction
(1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730000; 2. Municipal Engineering Company Limited, China Railway 18th Bureau Group Corporation Limited, Tianjin 300000)
Download: PDF (5914KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 以福州地铁5号线盾构下穿在建福厦高铁为工程背景,针对软土地层小半径曲线盾构隧道下穿高铁高填方路基交叉施工工程的特殊性,利用现场监测数据对交叉施工全过程展开分析,研究该类工程地基加固效果及施工变形规律。结果表明,该工程若采用预应力混凝土管桩进行地基加固,后期地铁盾构施工不具备施工条件,需施作桩板结构进行地基处理;采用桩板结构对软土区域进行加固处理后,实测数据中最大地表沉降量为5.6 mm,为地表沉降控制值的18.67%,在可控范围内;提前进行地基加固后,当盾构隧道下穿施工时,路基不同位置处仅发生微小沉降,说明桩板结构加固对交叉施工变形有很好的控制效果;随着路基填筑高度增大,各层土压力值整体呈增大趋势,各层土压力变化速率呈“双峰曲线”,路基中间位置的土压力值比靠近两侧的土压力值大;盾构隧道下穿前,桩板结构混凝土支撑轴力的变化大致可分为“线性增长—过渡—再增长—稳定”4个阶段,当盾构下穿后,混凝土支撑轴力有小幅增大,后期逐渐趋于稳定。从监测数据分析可以看出,桩板结构的加固效果显著。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
曹小平 1 韦志凯 1 卢洪强 2 牟 晶 2 符小林 2 李志超 2
关键词盾构隧道   高速铁路   软土地层   桩板结构   交叉施工     
Abstract: Taking as a research case the shield tunnel of Line 5 of the Fuzhou Metro crossing under the Fuzhou-Xia? men High-speed Railway (under construction), the on-site monitoring data were used to analyze the full process of Crossing construction according to the characteristics of the small-diameter curved shield tunnel in a soft soil stratum crossing under the high-fill subgrade of high-speed rail, so as to research the effect of foundation reinforcement of such projects and the law of construction deformation. The results show that if prestressed concrete pipe piles are used for foundation reinforcement of this project and construction conditions are not available in the metro shield construction at a later stage, the pile-slab structure should be constructed for foundation treatment; after the pileslab structure is used for reinforcement in the soft soil area, the maximum ground settlement is 5.6 mm in the measured data, accounting for 18.67% of the ground settlement control value, which is in the controllable range; after foundation reinforcement is conducted in advance, only slight settlement occurs in different positions of the subgrade in case of undercrossing construction of the shield tunnel, indicating that the reinforcement of pile-slab structure has a very good effect on controlling crossing construction deformation; as the subgrade filling height increases,the soil pressure value of each layer shows an overall increase, and the rate of change in the soil pressure of each layer shows the "bimodal curve" and the soil pressure value in the middle of the subgrade is higher than that close to both sides; before the shield tunnel crosses under the high-speed rail, the change in the axial force of concrete support of the pile-slab structure is roughly split into 4 stages: "linear growth - transition - regrowth - stability", and after the shield tunnel crosses, the axial force of concrete support slightly increases and gradually becomes stable at a later stage. It can be seen from the analysis of monitoring data that the reinforcement effect of pile-slab structure is significant.
KeywordsShield tunnel,   High-speed railway,   Soft soil stratum,   Pile-slab structure,   Crossing construction     
基金资助:国家自然基金地区科学基金项目(52168070,52068044,51968041);甘肃省科技计划资助项目(22JR5RA330)
作者简介: 曹小平(1971-),男,博士,教授,主要从事隧道及地下工程施工技术和数值计算方面的教学和科研工作,E-mail:caoxp@mail.lzjtu.cn.
引用本文:   
曹小平 1 韦志凯 1 卢洪强 2 牟 晶 2 符小林 2 李志超 2 .软土地层小半径盾构隧道下穿在建高铁地基加固效果研究[J]  现代隧道技术, 2023,V60(1): 209-218
CAO Xiaoping1 WEI Zhikai1 LU Hongqiang2 MOU Jing2 FU Xiaolin2 LI Zhichao2 .Research on the Effect of Foundation Reinforcement of Small-radius Shield Tunnels in Soft Soil Stratum Crossing under High-speed Rail under Construction[J]  MODERN TUNNELLING TECHNOLOGY, 2023,V60(1): 209-218
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2023/V60/I1/209
 
没有本文参考文献
[1] 曹翔鹏 1,2 封 坤 2 薛皓匀 2 毛 升 1 喻 波 2,3.大直径盾构隧道双层衬砌横向抗震性能研究[J]. 现代隧道技术, 2023,60(1): 130-139
[2] 陈福江 1 段蓉蒨 1 张 鑫 2 刘金刚 3 孙苍乾 1 李茜茜 1.近距离桩基施工对既有盾构隧道的振动影响分析[J]. 现代隧道技术, 2023,60(1): 140-148
[3] 王子健 1 刘 腾 2 冀晓东 1 刘学彦 1.斜坡条件下盾构隧道开挖面稳定极限上限研究[J]. 现代隧道技术, 2022,59(6): 42-50
[4] 陈仁东 1 陆 平 2 孙 烨 1 刘明高 1 庞 康 1.超大直径盾构隧道横通道离心模型试验研究[J]. 现代隧道技术, 2022,59(6): 114-124
[5] 周胜利.软弱泥岩大直径盾构姿态失稳与处理措施研究[J]. 现代隧道技术, 2022,59(6): 208-215
[6] 刘 彬 1 赵东平 2,3 李 栋 3.复合地层盾构隧道下穿高速公路洞内注浆加固范围研究[J]. 现代隧道技术, 2022,59(6): 187-196
[7] 官林星 1 温竹茵 1 王晓鹏 2 由广明 1 孙 巍 1 庄欠伟 3.粗合成纤维在排水调蓄盾构法隧洞管片中的应用试验研究[J]. 现代隧道技术, 2022,59(6): 258-265
[8] 黄忠凯 1 张冬梅 1 周文鼎 1 程屹歆 1 仝 跃 2.基于贝叶斯网络的盾构隧道横截面变形预测方法[J]. 现代隧道技术, 2022,59(5): 10-17
[9] 杨振华.浅覆土接收盾构隧道环间压力分布规律研究[J]. 现代隧道技术, 2022,59(5): 18-26
[10] 赵森森 张冬梅 黄忠凯.大直径盾构隧道分布式凹凸榫受力特性[J]. 现代隧道技术, 2022,59(5): 54-62
[11] 李春林 1 张西文 2,3 刘广森 2,3 刘俊岩 2,3 刘 燕 2,3 孙文昊 4 张亮亮 4 何应道 4.循环荷载作用下大直径盾构隧道力学变形特性研究[J]. 现代隧道技术, 2022,59(5): 47-53
[12] 崔庆龙 1 李 金 1 高斌勇 2 熊欣悦 2.大直径盾构隧道管片纵缝三斜螺栓接头力学特性研究[J]. 现代隧道技术, 2022,59(5): 63-71
[13] 李翔宇 1,2 李新源 3 李明宇 4 杨 潇 5 黄 沛 6.不同程度渗漏水对盾构隧道长期沉降影响规律研究[J]. 现代隧道技术, 2022,59(5): 72-79
[14] 莫伟樑 1 杨雨冰 1 林越翔 2,3 卢明健 1.基于OFDR技术的盾构隧道管片错台变形测量与计算方法[J]. 现代隧道技术, 2022,59(5): 179-187
[15] 章庭瑞.大型盾构隧道火灾高温特性及力学行为研究[J]. 现代隧道技术, 2022,59(5): 202-211
Copyright 2010 by 现代隧道技术