[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (1) :236-244    DOI:
规划设计与施工 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
大直径盾构隧道内部装配式预制结构安装路径优化及应用
(1.上海工程技术大学城市轨道交通学院,上海 201620;2.东华大学环境科学与工程学院,上海 201620; 3.上海隧道工程有限公司,上海 200032)
Optimization and Application of Installation Path of Prefabricated Structure in Large-diameter Shield Tunnel
(1. School of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620; 2. College of Environmental Science and Engineering, Donghua University, Shanghai 201620; 3. Shanghai Tunnel Engineering Co., Ltd., Shanghai 200032)
Download: PDF (4251KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 传统盾构隧道施工中存在内部预制构件施工工艺不先进、施工效率低等问题,通过分析盾构隧道预制装配式构件在安装过程中的运动特征,对智能化拼装机器人在隧道内部安装预制构件的路径进一步优化。结合隧道中隔墙安装工程实际情况,路径优化前需要根据构件的特点和拼装机的作业环境,提前规划好内部结构在运输车上的位姿,当构件运输到位后根据右手定则在预制构件上建立坐标系并建立相应的运动方程,选出构件最佳的运动路径,最后根据运动路径对安装机进行进一步优化控制。结果表明:(1)智能拼装机器人能够在隧道内部完成中隔墙和弧形件等预制构件的安装作业,拼装精度能够满足构件的安装需要,油缸的动作执行精度能够达到0.5 mm;(2)通过采用智能拼装机进行施工作业,安装误差由20 mm降低至1 mm,弧形件和中隔墙24 h安装数量分别提高到30块和35块;(3)结合中隔墙的位姿运动方程优化其安装路径,可以提高盾构隧道中隔墙的安装施工效率,提高装配式施工的控制精度。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
郇昊霖1 李培楠2 刘 俊1 宋兴宝3 秦 元3 寇晓勇3 翟一欣3
关键词大直径盾构隧道   预制结构   安装路径优化   坐标变换   中隔墙拼装     
Abstract: The traditional shield tunnel construction process has the problems such as unadvanced construction pro? cess of prefabricated members and low efficiency of construction. By analyzing the motion characteristics of the prefabricated members of shield tunnel in the installation process, the path of intelligent erection robot during installation of prefabricated members in the tunnel has been further optimized. According to practical installation of center diaphragms in actual tunnel projects, it is determined that the position and orientation of the internal structure on the transport vehicle must be planned according to the characteristics of the members and the working environment of the erector before path optimization is done. After the member is transported to its position, coordinate system must be created on the prefabricated member by using the right hand rule and the corresponding equation of motion must be established, to select the optimal motion path. At last, the erector control is further optimized according to the motion path. As the results indicate: (1) The intelligent center diaphragm erection robot can accomplish installation of the prefabricated members such as center diaphragm and arcuate member in a tunnel, its erection accuracy can meet the member installation requirements, and the motion execution accuracy of oil cylinder is up to 0.5 mm.(2) In the construction process that uses an intelligent erector, the installation error is reduced from 20 mm to 1 mm,and the number of arcuate members and center diaphragms installed in 24 h is increased to 30,35 respectively. (3)The installation path is optimized by using the position and orientation of center diaphragm and the equation of motion, to increase the center diaphragm installation efficiency in shield tunnel and enhance the control accuracy of construction with prefabricated members.
KeywordsLarge-diameter shield tunnel,   Prefabricated structure,   Installation path optimization,   Coordinate trans? formation,   Center diaphragm erection     
基金资助:上海市科技创新行动计划社会发展科技攻关项目(21DZ1201105);中央高校基本科研业务费专项资金资助项目(21D111320).
作者简介: 郇昊霖(1999-),男,硕士研究生,主要从事隧道与地下工程的理论与实践方面的研究工作,E-mail: 516786037@qq.com. 通讯作者:刘 俊(1982-),女,博士,副教授,主要从事隧道与地下工程的理论与实践方面的研究与教学工作,E-mail: junliurs@sues.edu.cn.
引用本文:   
郇昊霖1 李培楠2 刘 俊1 宋兴宝3 秦 元3 寇晓勇3 翟一欣3 .大直径盾构隧道内部装配式预制结构安装路径优化及应用[J]  现代隧道技术, 2024,V61(1): 236-244
XUN Haolin1 LI Peinan2 LIU Jun1 SONG Xingbao3 QIN Yuan3 KOU Xiaoyong3 ZHAI Yixin3 .Optimization and Application of Installation Path of Prefabricated Structure in Large-diameter Shield Tunnel[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(1): 236-244
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I1/236
 
没有本文参考文献
[1] 郝鹏飞.预制整体式弧形件施工质量控制指标研究[J]. 现代隧道技术, 2024,61(1): 245-251
[2] 郑镇跡1 黄书华2 陈湘生1 张 良2 刘皓铭1 盛 健2 苏 栋1.超大直径盾构主隧道机械法联络通道特殊衬砌管片受力特性分析[J]. 现代隧道技术, 2024,61(1): 117-124
[3] 韩晓明 1,2 何 源 1,2 张飞雷 2,3,4.富水粉细砂层大直径盾构隧道联络通道施工关键技术研究——以孟加拉卡纳普里河底隧道为例[J]. 现代隧道技术, 2023,60(3): 227-235
[4] 曹翔鹏 1,2 封 坤 2 薛皓匀 2 毛 升 1 喻 波 2,3.大直径盾构隧道双层衬砌横向抗震性能研究[J]. 现代隧道技术, 2023,60(1): 130-139
[5] 崔庆龙 1 李 金 1 高斌勇 2 熊欣悦 2.大直径盾构隧道管片纵缝三斜螺栓接头力学特性研究[J]. 现代隧道技术, 2022,59(5): 63-71
[6] 魏龙海 1 王 秒 2 吴树元 1.南京建宁西路越江隧道总体设计与关键技术[J]. 现代隧道技术, 2022,59(5): 228-236
[7] 孙双篪 1,2 沈 奕 1 周质炎 2 周 龙 1 朱合华 1.大直径盾构隧道穿越建筑物群变形分析与控制措施[J]. 现代隧道技术, 2022,59(2): 103-110
[8] 赖浩然1 黄常元2 刘学增1 涂新斌2 谢俊3 桑运龙1,4.超载对淤泥质地层隧道结构受力性能影响分析——以苏通GIL综合管廊越江盾构隧道为例[J]. 现代隧道技术, 2018,55(5): 88-96
[9] 梁 禹1 阳军生1 林 辉2.大直径盾构隧道施工阶段管片上浮与受力研究[J]. 现代隧道技术, 2016,53(3): 91-97
[10] 拓勇飞, 郭小红.南京纬三路过江通道总体设计与关键技术[J]. 现代隧道技术, 2015,52(4): 1-6
[11] 赵 光1 王善高2 张 涛1.多波束河床监测技术在水下大直径盾构隧道工程中的应用[J]. 现代隧道技术, 2015,52(4): 195-200
Copyright 2010 by 现代隧道技术