[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2025, Vol. 62 Issue (1) :170-182    DOI:
数值分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
三孔顶管上穿施工对既有隧道与地表变形影响分析
(1.中铁隧道集团二处有限公司,三河 065201;2.中南大学土木工程学院,长沙 410075)
Analysis of the Impact of the Three Pipe Jacking Over-crossing Construction on Existing Tunnel and Surface Deformation
(1. China Railway Tunnel Group No.2 Engineering Co., Ltd., Sanhe 065201; 2. School of Civil Engineering, Central South University,Changsha 410075)
Download: PDF (8983KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 依托南昌市新建综合管廊三孔顶管上穿既有地铁隧道工程,通过建立三维数值模型,研究先中间后两边、先两边后中间、从右至左、三孔同时施工4种施工顺序对既有隧道与地表变形影响的差异,比选出最优施工顺序。并进一步探究不同注浆压力、掌子面压力和抗浮配重对既有隧道与地表变形的影响。最终通过现场监测,验证模拟结果的正确性,揭示既有隧道位移与地表变形规律。结果表明:先两边后中间施工顺序最优,其引起的地表沉降、既有隧道竖向位移与水平位移最小,较最大值分别减小18.2%、30.7%、23.8%;增大注浆压力能抑制地表沉降与既有隧道位移的发展,增大掌子面压力能减小地表沉降,但会使既有隧道位移增大,注浆压力与竖向土压力的比值宜控制在2.5~3.8之间,掌子面压力与侧向土压力的比值宜控制在1.88~2.5之间;施加抗浮配重能抑制既有隧道位移,且使隧道拱顶上浮达到最大值后出现回落,配重比为0.5、1.0时的降幅分别为17%和30%;顶管先后施工,地表沉降、沉降槽宽度与既有隧道位移均不断增大,由于阻隔效应,地铁下行线的位移小于上行线位移;监测得到地表最大沉降为13.5 mm,既有隧道拱顶最大竖向位移、道床最大竖向位移、拱腰最大水平位移分别为1.5 mm、1.1 mm、0.8 mm,均在安全范围内。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
陈 旺1 彭焱锋1 刘维正2 张思宇2 陈常辉1
关键词多孔顶管   施工参数   施工顺序   隧道变形   数值模拟   现场监测     
Abstract: Based on the new three pipe jacking utility tunnel crossing over existing metro tunnel in Nanchang City, a three-dimensional numerical model was established to study the deformation of the existing tunnel and ground surface under four construction sequences: first the middle, then both sides; first both sides, then the middle; right to left; and simultaneous construction of the three pipe jacking. The optimal construction sequence was selected by comparing the impact of these construction sequences on the deformation of the existing tunnel and the ground surface. The study further investigates the effect of different grouting pressures, face pressures, and anti-floating counterweights on the deformation of the existing tunnel and the ground surface. Finally, field monitoring was conducted to verify the accuracy of the simulation results and reveal the displacement and deformation patterns of the existing tunnel and the ground surface. The results show that: (1) The two-sides-first construction sequence is the optimal one, resulting in the least surface settlement, vertical tunnel displacement, and horizontal tunnel displacement, reducing them by 18.2%, 30.7%, and 23.8%, respectively, compared to the maximum values; (2) Increasing grouting pressure can suppress the development of surface settlement and tunnel displacement. Increasing face pressure can re? duce surface settlement but will increase tunnel displacement. The ratio of grouting pressure to vertical soil pressure should be controlled between 2.5 and 3.8, and the ratio of working face pressure to lateral soil pressure should be controlled between 1.88 and 2.5; (3) Applying anti-floating counterweights can suppress tunnel displacement, causing the floating of the tunnel vault to rise to a maximum value before decreasing. The reduction in displacement for counter weight ratios of 0.5 and 1 is 17% and 30%, respectively; (4) During the successive pipe jacking process, the surface settlement, settlement trough width, and tunnel displacement increase with each construction step. Due to the isolation effect, the displacement of the metro's downward line is smaller than that of the upward line; (5) Field monitoring showed a maximum surface settlement of 13.5 mm, with the maximum vertical displacement at the tunnel vault, the maximum vertical displacement at the track bed, and the maximum horizontal displacement at the tunnel waist being 1.5 mm, 1.1 mm, and 0.8 mm, respectively, all within safe limits.
KeywordsMultiple pipe jacking,   Construction parameters,   Construction sequence,   Tunnel deformation,   Numerical simulation,   Field monitoring     
基金资助:湖南省建设科技计划项目(KY202108);中铁隧道局集团科技创新计划(隧二研合2020-08).
作者简介: 陈 旺(1989-),男,高级工程师,主要从事隧道及地下工程施工及管理工作,E-mail:aswanwang@163.com. 通讯作者:刘维正(1982-),男,博士,副教授,主要从事交通岩土及地下工程领域的研究与教学工作,E-mail:liuwz2011@csu.edu.cn.
引用本文:   
陈 旺1 彭焱锋1 刘维正2 张思宇2 陈常辉1 .三孔顶管上穿施工对既有隧道与地表变形影响分析[J]  现代隧道技术, 2025,V62(1): 170-182
CHEN Wang1 PENG Yanfeng1 LIU Weizheng2 ZHANG Siyu2 CHEN Changhui1 .Analysis of the Impact of the Three Pipe Jacking Over-crossing Construction on Existing Tunnel and Surface Deformation[J]  MODERN TUNNELLING TECHNOLOGY, 2025,V62(1): 170-182
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2025/V62/I1/170
 
没有本文参考文献
[1] 冯冀蒙1,2 宋佳黛1,2 王圣涛3 李艺飞1,2 张俊儒1,2 王好明4 汪 波1,2.填海地层特大断面隧道超长管棚变形控制 效能研究[J]. 现代隧道技术, 2025,62(4): 155-162
[2] 熊 颖1,2 张俊儒1,2 范子焱1,2 陈佳豪1,2 马荐驰1,2 陈鹏涛1,2 谭瑞锋3,4.层状软岩中爆破应力波传播与振动衰减特性研究[J]. 现代隧道技术, 2025,62(4): 122-131
[3] 罗志洋1 张春瑜2,3 王立川1,2,4,5 徐 烁1 李利平4 王倩倩5 刘志强6.TBM裂隙岩体隧洞涌水机制及注浆堵水研究[J]. 现代隧道技术, 2025,62(4): 145-154
[4] 周弋力1 封 坤1 郭文琦1 张亮亮2 李春林3.超大直径盾构隧道管片纵缝抗弯力学行为与损伤过程研究[J]. 现代隧道技术, 2025,62(4): 163-173
[5] 易 丹1 薛皓匀2 杨绍毅2 喻 波1 封 坤2 林 刚1.盾构隧道管片结构螺栓失效对横向地震响应的影响分析[J]. 现代隧道技术, 2025,62(4): 174-181
[6] 贾永刚1 郝子晗1 鲁卫东1 吴 帆1 阳卫卫2.钢纤维混凝土管片不同接头型式力学性能研究[J]. 现代隧道技术, 2025,62(4): 182-196
[7] 罗 龙1 朱开宬2 韩瑀萱3 蔡 东4 刘哲奇5 王 俊6.超大断面隧道施工工法优化研究 ——以天邛高速公路梨花山隧道工程为例[J]. 现代隧道技术, 2025,62(4): 273-282
[8] 胡云进1,,2,3 朱铭伟1,2,3 郜会彩1,2,3 任智豪1,2,3.地下水渗流对能源盾构隧道换热性能的影响[J]. 现代隧道技术, 2025,62(3): 50-59
[9] 郑腾跃1 王树英1,2 袁 潇1.基于数值模拟与机器学习的盾构下穿既有线施工参数优化[J]. 现代隧道技术, 2025,62(3): 100-107
[10] 李玉华1 高亚伟1 钟秋锋1 秦丽绚2 李俊杰2 程志明2 黄永辉2.不同掏槽孔角度下隧道楔形掏槽爆破效果研究[J]. 现代隧道技术, 2025,62(3): 108-116
[11] 李瀚源1,2 冯 劲1 郭洪雨1 谢雄耀2 周红升1 孙 飞1.海底盾构隧道双层衬砌结构联合承载力学特性研究[J]. 现代隧道技术, 2025,62(3): 126-138
[12] 苏 恒1 王士民1 朱旭红2 秦善良3.考虑空间效应的盾构刀具切削桩基主筋力学特征研究[J]. 现代隧道技术, 2025,62(3): 139-150
[13] 王帅帅1 傅一帆2,3 徐 勇1 史经峰1 郭 春2,3.通过接力风机进行风量分配的隧道施工风仓式通风参数研究[J]. 现代隧道技术, 2025,62(3): 240-248
[14] 葛正辉1 郑建国1 李新志2 陈 鹏3 宁志玮2 王鹏程2.不同形式拱架初期支护变形规律实测与数值研究[J]. 现代隧道技术, 2025,62(3): 40-49
[15] 李 敬1 罗禄森1 张柏林2 胡浩然2.辅助隧道封闭后隧道内瓦斯运移富集规律研究[J]. 现代隧道技术, 2025,62(2): 201-211
Copyright 2010 by 现代隧道技术