[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2025, Vol. 62 Issue (1) :170-182    DOI:
数值分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
三孔顶管上穿施工对既有隧道与地表变形影响分析
(1.中铁隧道集团二处有限公司,三河 065201;2.中南大学土木工程学院,长沙 410075)
Analysis of the Impact of the Three Pipe Jacking Over-crossing Construction on Existing Tunnel and Surface Deformation
(1. China Railway Tunnel Group No.2 Engineering Co., Ltd., Sanhe 065201; 2. School of Civil Engineering, Central South University,Changsha 410075)
Download: PDF (8983KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 依托南昌市新建综合管廊三孔顶管上穿既有地铁隧道工程,通过建立三维数值模型,研究先中间后两边、先两边后中间、从右至左、三孔同时施工4种施工顺序对既有隧道与地表变形影响的差异,比选出最优施工顺序。并进一步探究不同注浆压力、掌子面压力和抗浮配重对既有隧道与地表变形的影响。最终通过现场监测,验证模拟结果的正确性,揭示既有隧道位移与地表变形规律。结果表明:先两边后中间施工顺序最优,其引起的地表沉降、既有隧道竖向位移与水平位移最小,较最大值分别减小18.2%、30.7%、23.8%;增大注浆压力能抑制地表沉降与既有隧道位移的发展,增大掌子面压力能减小地表沉降,但会使既有隧道位移增大,注浆压力与竖向土压力的比值宜控制在2.5~3.8之间,掌子面压力与侧向土压力的比值宜控制在1.88~2.5之间;施加抗浮配重能抑制既有隧道位移,且使隧道拱顶上浮达到最大值后出现回落,配重比为0.5、1.0时的降幅分别为17%和30%;顶管先后施工,地表沉降、沉降槽宽度与既有隧道位移均不断增大,由于阻隔效应,地铁下行线的位移小于上行线位移;监测得到地表最大沉降为13.5 mm,既有隧道拱顶最大竖向位移、道床最大竖向位移、拱腰最大水平位移分别为1.5 mm、1.1 mm、0.8 mm,均在安全范围内。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
陈 旺1 彭焱锋1 刘维正2 张思宇2 陈常辉1
关键词多孔顶管   施工参数   施工顺序   隧道变形   数值模拟   现场监测     
Abstract: Based on the new three pipe jacking utility tunnel crossing over existing metro tunnel in Nanchang City, a three-dimensional numerical model was established to study the deformation of the existing tunnel and ground surface under four construction sequences: first the middle, then both sides; first both sides, then the middle; right to left; and simultaneous construction of the three pipe jacking. The optimal construction sequence was selected by comparing the impact of these construction sequences on the deformation of the existing tunnel and the ground surface. The study further investigates the effect of different grouting pressures, face pressures, and anti-floating counterweights on the deformation of the existing tunnel and the ground surface. Finally, field monitoring was conducted to verify the accuracy of the simulation results and reveal the displacement and deformation patterns of the existing tunnel and the ground surface. The results show that: (1) The two-sides-first construction sequence is the optimal one, resulting in the least surface settlement, vertical tunnel displacement, and horizontal tunnel displacement, reducing them by 18.2%, 30.7%, and 23.8%, respectively, compared to the maximum values; (2) Increasing grouting pressure can suppress the development of surface settlement and tunnel displacement. Increasing face pressure can re? duce surface settlement but will increase tunnel displacement. The ratio of grouting pressure to vertical soil pressure should be controlled between 2.5 and 3.8, and the ratio of working face pressure to lateral soil pressure should be controlled between 1.88 and 2.5; (3) Applying anti-floating counterweights can suppress tunnel displacement, causing the floating of the tunnel vault to rise to a maximum value before decreasing. The reduction in displacement for counter weight ratios of 0.5 and 1 is 17% and 30%, respectively; (4) During the successive pipe jacking process, the surface settlement, settlement trough width, and tunnel displacement increase with each construction step. Due to the isolation effect, the displacement of the metro's downward line is smaller than that of the upward line; (5) Field monitoring showed a maximum surface settlement of 13.5 mm, with the maximum vertical displacement at the tunnel vault, the maximum vertical displacement at the track bed, and the maximum horizontal displacement at the tunnel waist being 1.5 mm, 1.1 mm, and 0.8 mm, respectively, all within safe limits.
KeywordsMultiple pipe jacking,   Construction parameters,   Construction sequence,   Tunnel deformation,   Numerical simulation,   Field monitoring     
基金资助:湖南省建设科技计划项目(KY202108);中铁隧道局集团科技创新计划(隧二研合2020-08).
作者简介: 陈 旺(1989-),男,高级工程师,主要从事隧道及地下工程施工及管理工作,E-mail:aswanwang@163.com. 通讯作者:刘维正(1982-),男,博士,副教授,主要从事交通岩土及地下工程领域的研究与教学工作,E-mail:liuwz2011@csu.edu.cn.
引用本文:   
陈 旺1 彭焱锋1 刘维正2 张思宇2 陈常辉1 .三孔顶管上穿施工对既有隧道与地表变形影响分析[J]  现代隧道技术, 2025,V62(1): 170-182
CHEN Wang1 PENG Yanfeng1 LIU Weizheng2 ZHANG Siyu2 CHEN Changhui1 .Analysis of the Impact of the Three Pipe Jacking Over-crossing Construction on Existing Tunnel and Surface Deformation[J]  MODERN TUNNELLING TECHNOLOGY, 2025,V62(1): 170-182
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2025/V62/I1/170
 
没有本文参考文献
[1] 易壮鹏 王申奥 唐新超 陈志威.基于CFD的多车道宽幅悬浮隧道管体涡激振动特性研究[J]. 现代隧道技术, 2025,62(1): 92-102
[2] 沐海星1 封 坤1 郭文琦1 杨绍毅1 张亮亮2.超大直径盾构隧道管片结构力学行为与破坏特征研究[J]. 现代隧道技术, 2025,62(1): 125-134
[3] 万东兴1 张 迪2 孙 峰2 潘辰昕3 朱振伟1 徐晓峰1 何 超1 申屠琪1.超大直径浅埋盾构隧道施工期管片结构力学响应研究[J]. 现代隧道技术, 2025,62(1): 135-146
[4] 张成友1 汪 波1 杜泽昊1 高筠涵1 谭力豪2.不同锚杆支护体系防岩爆适宜性分析与锚杆参数优化研究[J]. 现代隧道技术, 2024,61(6): 64-73
[5] 匡 亮1 粟 威1 陶伟明1 田四明2 申玉生3 黎 旭2 汪辉武1.跨走滑断层隧道结构影响分区及设防范围研究[J]. 现代隧道技术, 2024,61(6): 45-54
[6] 邱 伟1 曾庆成1 欧阳剑1 沐海星2 郭文琦2 封 坤2 胡大伟3.盾构隧道凹凸榫-斜螺栓构造环缝抗剪力学性能研究[J]. 现代隧道技术, 2024,61(6): 129-138
[7] 薛青松.大断面矩形顶管上跨地铁隧道施工变形分布特征及控制措施[J]. 现代隧道技术, 2024,61(6): 148-161
[8] 王圣涛1 张俊儒2 彭 波1 燕 波3.拱隧一体结构跨越巨型溶洞段处治技术研究[J]. 现代隧道技术, 2024,61(5): 263-273
[9] 李 栋1 周 岳2 王 峰3 李伟鹏4 叶皆显5 曹 雄1 白振超5 党文刚5.隧道围岩节理裂隙变频渗流数值模拟研究[J]. 现代隧道技术, 2024,61(5): 146-155
[10] 马建军1,4 唐 荣1 刘 聪2 黄伟真1 林越翔3.蠕变-渗流耦合下的砂岩力学特性及穿江隧道 稳定性研究[J]. 现代隧道技术, 2024,61(5): 156-166
[11] 汪元冶1 丁文其1,2 杨进京3 乔亚飞1,2 丁文云3.岩溶地层大断面铁路隧道悬臂掘进机施工穿越上部既有建筑扰动规律研究[J]. 现代隧道技术, 2024,61(5): 274-284
[12] 吕林海1,2,3 蒋明杰1,2 谢忠铭1,2 黄钟晖4 王炳华3 梅国雄5.基于层状Mindlin解的基坑开挖引起下卧隧道变形计算方法[J]. 现代隧道技术, 2024,61(4): 95-104
[13] 刘肖汇1 封 坤1 郭文琦1 鲁选一1 彭长胜2 李姣阳2.内部结构施作方式对盾构隧道纵向力学特性的影响研究[J]. 现代隧道技术, 2024,61(4): 151-160
[14] 朱美恒1 陈思睿2 黄忠凯2 李永波1 张吾渝3 张冬梅2.地表超载作用下大直径全预制装配盾构隧道受力变形规律研究[J]. 现代隧道技术, 2024,61(4): 161-171
[15] 苏培东 陆星好 李有贵 邱 鹏 安兴玲.亭子口灌区瓦斯水工隧洞施工通风影响因素研究[J]. 现代隧道技术, 2024,61(4): 180-191
Copyright 2010 by 现代隧道技术