[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2015, Vol. 52 Issue (1) :89-97    DOI:
研究与分析 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
水下隧道复合式衬砌水压特征研究
(北京交通大学土建学院,北京 100044)
Study on the Characteristics of Water Pressure on the Composite Lining in Underwater Tunnels
(School of Civil Engineering, Beijing Jiaotong University, Beijing 100044)
Download: PDF (1157KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 水下隧道无论在施工期还是运营期,时刻都处于有无限水源补给且水头恒定的水体下,因此水压是水下隧道衬砌结构设计的主要荷载之一。文章通过理论分析、模型试验和对厦门海底隧道现场实测数据的分析,研究了水下隧道复合式衬砌的水压特征。研究表明:(1)仅在考虑隧道排水时,注浆圈才能发挥减小对衬砌水压的作用。随注浆厚度增加,衬砌水压减少,且注浆效果越好,衬砌水压降低越明显,而相应注浆圈分担的水压也就越高,但是注浆圈厚度的无限增大对减少衬砌水压作用甚微,合理的注浆厚度在3~8 m范围内;(2)随着初期支护抗渗性的加强,衬砌水压明显增加。设计时必须考虑初期支护承受一定的水压。初期支护水压主要取决于注浆层与初期支护渗透系数的比值;(3)不论注浆水平如何,不论初期支护、二次衬砌渗透系数如何,二次衬砌水压折减系数的大小关键取决于进入初期支护的水量能被多大程度地排出,即取决于隧道排水量与进入初期支护水量的比值。在确定二次衬砌水压时,还应考虑初始渗流场的影响。研究可为水下隧道和高水压山岭隧道的结构设计提供参考。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
王秀英
谭忠盛
关键词:   
Abstract: Abstract An underwater tunnel, whether in the construction or operation phase, is always located under the water, with an unlimited water supply and constant head; thus, the water pressure is one of the main loads to be considered for the lining structure design for an underwater tunnel. In this paper, the characteristics of water pressure on composite linings in underwater tunnels are studied by a theoretical analysis, model test, and field-measured data analysis of the Xiamen subsea tunnel. The research show that: (1) when only considering tunnel drainage, the grouting circle can reduce the water pressure on the lining. Water pressure on the lining reduces with an increase of grouting thickness, and the better the grouting effect is, the more obvious the reduction in water pressure, with the higher water pressure shared by the relevant grouting circle. However, the unlimited increase of the thickness of the grouting circle has little effect on the reduction of the water pressure, so a reasonable grouting thickness is 3~8m; (2) the water pressure on the lining obviously increases with the strengthening of primary support permeability resistance. Certain water pressure on the primary support must be considered in the design, and the water pressure on the primary support is mainly dependent on the ratio of the permeability coefficient of the grouting layer to that of the primary support; and (3) the reduction coefficient of water pressure on the secondary lining depends on the discharge of water permeating into the primary lining, namely, the ratio of the water drainage of the tunnel to the volume of water permeating into the primary lining, regardless of the grouting effect and the permeability coefficient of the primary support and secondary lining. During the determination of water pressure on the secondary lining, the impact of the initial seepage field has to be considered. This research can provide a reference for the structural design of underwater tunnels and mountain tunnels with high water pressure.
KeywordsKeywords Underwater tunnel,   Primary support,   Secondary lining,   Water pressure     
出版日期: 2014-01-20
基金资助:

基金项目:国家自然科学基金资助项目(50878019,51178026).

作者简介: 作者简介:王秀英(1970-),女,博士,副教授,主要从事隧道及地下工程方面的教学和研究工作,E-mail:xy98_wang@126.com.
引用本文:   
王秀英, 谭忠盛 .水下隧道复合式衬砌水压特征研究[J]  现代隧道技术, 2015,V52(1): 89-97
WANG Xiu-Ying, Tan-Zhong-Sheng .Study on the Characteristics of Water Pressure on the Composite Lining in Underwater Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2015,V52(1): 89-97
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2015/V52/I1/89
 
没有本文参考文献
[1] 刘飞香 1,2.SCDZ133智能型隧道多功能作业台车及其施工技术[J]. 现代隧道技术, 2019,56(4): 1-7
[2] 周文波 吴惠明 赵 峻.泥岩地层常压刀盘盾构的掘进策略与分析[J]. 现代隧道技术, 2019,56(4): 8-15
[3] 陈卓立 1,2 朱训国 1,2 赵德深 1,2 王云平 1,2.深埋隧洞让压支护结构的锚固机理探究[J]. 现代隧道技术, 2019,56(4): 16-22
[4] 王全胜.矩形盾构法隧道管片分块案例分析及分块原则[J]. 现代隧道技术, 2019,56(4): 23-29
[5] 张 恒 1 朱亦墨 1 林 放 1 陈寿根 1 杨家松 2.基于Q系统的地下洞库中台阶最佳开挖高度研究[J]. 现代隧道技术, 2019,56(4): 30-37
[6] 李 好.大断面岩溶隧道贯通段地质情况的无线电波透视试验探测[J]. 现代隧道技术, 2019,56(4): 38-42
[7] 岑培山 1 田坤云 2 王喜民 3.蒙华铁路阳山隧道瓦斯危害性评估研究[J]. 现代隧道技术, 2019,56(4): 43-49
[8] 朱建峰 1 宫全美 2.软土地层盾构隧道长期沉降离心试验研究[J]. 现代隧道技术, 2019,56(4): 49-55
[9] 陈柚州 1 任 涛 2 邓 朋 2 王 斌 3.基于人工蜂群优化小波神经网络的隧道沉降预测[J]. 现代隧道技术, 2019,56(4): 56-61
[10] 王登茂 滕振楠 田志宇 陈志学.桃园至巴中高速公路八庙隧道非常规岩爆段病害处治与设计反思[J]. 现代隧道技术, 2019,56(4): 62-68
[11] 吴树元 1 程 勇 1 谢全敏 2 刘继国 1 陈必光 1.西藏米拉山隧道围岩大变形成因分析[J]. 现代隧道技术, 2019,56(4): 69-73
[12] 王 睢 1,2,3 钟祖良 3 刘新荣 3 吴 波 1,2,4 赵勇博 1,2 李占涛 1,2.基于D-P准则有压圆形衬砌隧洞弹塑性解[J]. 现代隧道技术, 2019,56(4): 74-80
[13] 李 明 严松宏 潘春阳 张旭斌.富水大断面黄土隧道开挖流固耦合效应分析[J]. 现代隧道技术, 2019,56(4): 81-88
[14] 张 凯 1 陈寿根 2 霍晓龙 3 谭信荣 4.岩溶地区隧道涌水风险的可拓评价模型及应用[J]. 现代隧道技术, 2019,56(4): 89-96
[15] 李 杰 1 张 斌 1 付 柯 1 马 超 1 郭京波 1 牛得草 2.基于现场掘进数据的复合地层盾构掘进性能预测方法研究[J]. 现代隧道技术, 2019,56(4): 97-104
Copyright 2010 by 现代隧道技术