[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2015, Vol. 52 Issue (1) :136-142    DOI:
研究与分析 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
大直径土压平衡盾构施工穿越建筑物沉降预测及控制技术研究
(1北京交通大学土木建筑工程学院,北京100044;2北京市政集团,北京100045; 3北京市轨道交通建设管理有限公司,北京100037)
Prediction and Control Techniques for Building Settlement Induced by Large-Diameter EPB Shield Tunnelling
(1 School of Civil Engineering, Beijing Jiaotong University, Beijing 100044;2 Beijing Municipal Group, Beijing 100045;
3 Beijing Metro Construction Administration Co. Ltd., Beijing 100037)
Download: PDF (1009KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 文章以北京地铁十四号线首次采用大直径土压平衡盾构穿越建筑物施工为例,利用数值模拟对建筑物沉降进行了预测,并与工程监测数据进行了对比分析。研究结果表明,建筑物沉降值和倾斜值在控制标准之内,说明设计施工方案可行;盾尾空隙沉降占最大沉降值的30%~50%,应以此为主采取措施来达到预期的沉降控制目标;地面预埋管注浆是控制沉降有效的辅助措施;盾构施工中土体塑流性改善、掘进参数控制、出土量、盾尾同步注浆、二次补注浆是沉降控制的关键环节。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
孙长军1
3
张顶立1
郭玉海2
马晓卫3
关键词:   
Abstract: Based on the construction practice of a large-diameter EPB shield first adopted for Beijing Metro Line 14, the building settlement induced by shield tunneling is predictied by numerical simulation and a comparative analysis of predicted and measured data is carried out. The results show that: the settlement and inclination of buildings are within control standards and the design and construction scheme is feasible; the settlement at the shield tail is 30% to 50% of the maximum settlement and it is a critical factor to control; the grouting via the embedded pipes on the ground is an effective auxiliary measure to control settlement; the key points to control settlement during shield construction include improvement of the plastic flow properties of the soil mass, control of driving parameters, extracted muck volume, simultaneous grouting at the shield tail, and secondary grouting.
KeywordsLarge-diameter EPB shield,   Settlement law,   Control techniques,   FLAC numerical simulation     
出版日期: 2013-11-29
基金资助:

基金项目:国家科技支撑计划项目(2012BAJ01B03).

作者简介: 作者简介:孙长军(1970-),男, 博士研究生,高级工程师,主要从事地铁工程技术与管理工作,E-mail:suncj8898@263.net.
引用本文:   
孙长军1, 3, 张顶立1等 .大直径土压平衡盾构施工穿越建筑物沉降预测及控制技术研究[J]  现代隧道技术, 2015,V52(1): 136-142
SUN Chang-Jun-1, 3 , ZHANG Ding-Li-1 etc .Prediction and Control Techniques for Building Settlement Induced by Large-Diameter EPB Shield Tunnelling[J]  MODERN TUNNELLING TECHNOLOGY, 2015,V52(1): 136-142
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2015/V52/I1/136
 
没有本文参考文献
[1] 刘飞香 1,2.SCDZ133智能型隧道多功能作业台车及其施工技术[J]. 现代隧道技术, 2019,56(4): 1-7
[2] 周文波 吴惠明 赵 峻.泥岩地层常压刀盘盾构的掘进策略与分析[J]. 现代隧道技术, 2019,56(4): 8-15
[3] 陈卓立 1,2 朱训国 1,2 赵德深 1,2 王云平 1,2.深埋隧洞让压支护结构的锚固机理探究[J]. 现代隧道技术, 2019,56(4): 16-22
[4] 王全胜.矩形盾构法隧道管片分块案例分析及分块原则[J]. 现代隧道技术, 2019,56(4): 23-29
[5] 张 恒 1 朱亦墨 1 林 放 1 陈寿根 1 杨家松 2.基于Q系统的地下洞库中台阶最佳开挖高度研究[J]. 现代隧道技术, 2019,56(4): 30-37
[6] 李 好.大断面岩溶隧道贯通段地质情况的无线电波透视试验探测[J]. 现代隧道技术, 2019,56(4): 38-42
[7] 岑培山 1 田坤云 2 王喜民 3.蒙华铁路阳山隧道瓦斯危害性评估研究[J]. 现代隧道技术, 2019,56(4): 43-49
[8] 朱建峰 1 宫全美 2.软土地层盾构隧道长期沉降离心试验研究[J]. 现代隧道技术, 2019,56(4): 49-55
[9] 陈柚州 1 任 涛 2 邓 朋 2 王 斌 3.基于人工蜂群优化小波神经网络的隧道沉降预测[J]. 现代隧道技术, 2019,56(4): 56-61
[10] 王登茂 滕振楠 田志宇 陈志学.桃园至巴中高速公路八庙隧道非常规岩爆段病害处治与设计反思[J]. 现代隧道技术, 2019,56(4): 62-68
[11] 吴树元 1 程 勇 1 谢全敏 2 刘继国 1 陈必光 1.西藏米拉山隧道围岩大变形成因分析[J]. 现代隧道技术, 2019,56(4): 69-73
[12] 王 睢 1,2,3 钟祖良 3 刘新荣 3 吴 波 1,2,4 赵勇博 1,2 李占涛 1,2.基于D-P准则有压圆形衬砌隧洞弹塑性解[J]. 现代隧道技术, 2019,56(4): 74-80
[13] 李 明 严松宏 潘春阳 张旭斌.富水大断面黄土隧道开挖流固耦合效应分析[J]. 现代隧道技术, 2019,56(4): 81-88
[14] 张 凯 1 陈寿根 2 霍晓龙 3 谭信荣 4.岩溶地区隧道涌水风险的可拓评价模型及应用[J]. 现代隧道技术, 2019,56(4): 89-96
[15] 李 杰 1 张 斌 1 付 柯 1 马 超 1 郭京波 1 牛得草 2.基于现场掘进数据的复合地层盾构掘进性能预测方法研究[J]. 现代隧道技术, 2019,56(4): 97-104
Copyright 2010 by 现代隧道技术