[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2017, Vol. 54 Issue (6) :158-165    DOI:
分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
浅埋单拱大跨无柱车站抗震分析研究
(1青岛地铁集团有限公司,青岛 266045;2中铁二院昆明勘察设计研究院有限责任公司,昆明 650200)
Aseismic Analysis of a Shallow-Buried Large-Span Single-Arch Station with No Column
(1 Qingdao Metro Group Co. Ltd., Qingdao 266045; 2 Kunming Survey, Design and Research Institute Co. Ltd. of CREEC, Kunming 650200)
Download: PDF (2893KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 文章简要阐述了地铁抗震分析常用计算方法的优缺点及适用性,并结合青岛地铁 4号线人民会堂站实际情况建立有限元模型,计算分析地震荷载作用下车站动力特性,通过对比结构各点内力及位移,结果表明:(1)反应位移法、反应加速度法计算地震响应结果普遍比时程分析法大,且车站刚度越大,偏差越大;(2)鉴于 E3状态下结构弹塑性本构误差较大,对于截面变化不大、地层较为简单的车站弹塑性层间位移可采用弹性层间位移乘以延性系数;(3)惯性力法计算普遍比反应位移法小,但当车站惯性力起主导作用(即车站刚度相对于土体很大)时,惯性力法与反应位移法计算相差不大;(4)青岛车站基本位于花岗岩中,结构动力响应 90%是由剪切力引起,不同于昆明、常州、郑州等土体抗震分析结果;(5)地铁结构层间位移角随车站埋深增大而增加,随矢跨比、围岩弹模、二次衬砌厚度增加而减少,但其中二次衬砌厚度对层间位移角影响最小,车站埋深影响最大。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词:   
Abstract: The advantages, disadvantages and applicability of common calculation methods for aseismic analysis of metro tunnels are briefly described. A finite-element model is established based on the People′s Hall Station of Qingdao metro line 4, and the dynamic characteristics of a metro station under a seismic load is calculated and analyzed.A comparison of the internal force and displacement at each point of the structure shows: 1) the seismic response results calculated by the response displacement method and response acceleration method are generally larger than those calculated by the time- history method, and the greater the station stiffness, the larger the difference; 2) in light of a large elastic-plastic constitutive error of the structure under an E3 state, the elastic-plastic interlayer displacement can be obtained by multiplying the elastic interlayer displacement and ductility coefficient for the station in the simple stratum; 3) the results calculated by the inertia force method are generally larger than those calculated by the response displacement method, while the difference is small if the station inertia force plays a leading role (i.e.,the station stiffness is very great with respect to the soil mass); 4) the Qingdao station is basically located in granite,with 90% of the structure dynamic response caused by shear force, so the aseismic analysis results of the soil mass are different from those of Kunming, Changzhou and Zhengzhou; and 5) the interlayer displacement angle of the metro structure increases with an increase of the station overburden but decreases with an increase of the rise-span ratio, elastic modulus of the rock mass and thickness of the secondary lining, while the thickness of the secondary lining has little effect on the angle of the interlayer displacement and the station overburden has greatest effect on the angle of the interlayer displacement.
KeywordsSingle arch and large span,   Aseismic,   Inertial force method,   Response displacement method,   Response acceleration method,   Time-history analysis method     
作者简介: 作者简介:李 刚(1961-),男,高级工程师,主要从事轨道交通工程技术研究管理工作,E-mail:lg0373@qq.com.
引用本文:   
.浅埋单拱大跨无柱车站抗震分析研究[J]  现代隧道技术, 2017,V54(6): 158-165
.Aseismic Analysis of a Shallow-Buried Large-Span Single-Arch Station with No Column[J]  MODERN TUNNELLING TECHNOLOGY, 2017,V54(6): 158-165
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2017/V54/I6/158
 
没有本文参考文献
[1] 刘飞香 1,2.SCDZ133智能型隧道多功能作业台车及其施工技术[J]. 现代隧道技术, 2019,56(4): 1-7
[2] 周文波 吴惠明 赵 峻.泥岩地层常压刀盘盾构的掘进策略与分析[J]. 现代隧道技术, 2019,56(4): 8-15
[3] 陈卓立 1,2 朱训国 1,2 赵德深 1,2 王云平 1,2.深埋隧洞让压支护结构的锚固机理探究[J]. 现代隧道技术, 2019,56(4): 16-22
[4] 王全胜.矩形盾构法隧道管片分块案例分析及分块原则[J]. 现代隧道技术, 2019,56(4): 23-29
[5] 张 恒 1 朱亦墨 1 林 放 1 陈寿根 1 杨家松 2.基于Q系统的地下洞库中台阶最佳开挖高度研究[J]. 现代隧道技术, 2019,56(4): 30-37
[6] 李 好.大断面岩溶隧道贯通段地质情况的无线电波透视试验探测[J]. 现代隧道技术, 2019,56(4): 38-42
[7] 岑培山 1 田坤云 2 王喜民 3.蒙华铁路阳山隧道瓦斯危害性评估研究[J]. 现代隧道技术, 2019,56(4): 43-49
[8] 朱建峰 1 宫全美 2.软土地层盾构隧道长期沉降离心试验研究[J]. 现代隧道技术, 2019,56(4): 49-55
[9] 陈柚州 1 任 涛 2 邓 朋 2 王 斌 3.基于人工蜂群优化小波神经网络的隧道沉降预测[J]. 现代隧道技术, 2019,56(4): 56-61
[10] 王登茂 滕振楠 田志宇 陈志学.桃园至巴中高速公路八庙隧道非常规岩爆段病害处治与设计反思[J]. 现代隧道技术, 2019,56(4): 62-68
[11] 吴树元 1 程 勇 1 谢全敏 2 刘继国 1 陈必光 1.西藏米拉山隧道围岩大变形成因分析[J]. 现代隧道技术, 2019,56(4): 69-73
[12] 王 睢 1,2,3 钟祖良 3 刘新荣 3 吴 波 1,2,4 赵勇博 1,2 李占涛 1,2.基于D-P准则有压圆形衬砌隧洞弹塑性解[J]. 现代隧道技术, 2019,56(4): 74-80
[13] 李 明 严松宏 潘春阳 张旭斌.富水大断面黄土隧道开挖流固耦合效应分析[J]. 现代隧道技术, 2019,56(4): 81-88
[14] 张 凯 1 陈寿根 2 霍晓龙 3 谭信荣 4.岩溶地区隧道涌水风险的可拓评价模型及应用[J]. 现代隧道技术, 2019,56(4): 89-96
[15] 李 杰 1 张 斌 1 付 柯 1 马 超 1 郭京波 1 牛得草 2.基于现场掘进数据的复合地层盾构掘进性能预测方法研究[J]. 现代隧道技术, 2019,56(4): 97-104
Copyright 2010 by 现代隧道技术