[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2017, Vol. 54 Issue (6) :180-186    DOI:
分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
洲头咀沉管隧道模袋砂围堰施工变形实测与数值模拟
(1 广州市市政工程设计研究总院,广州 510060;2 华南理工大学土木与交通学院,广州 510641)
Measurement and Numerical Simulation of Deformation of the Cofferdam with Geotextile Sand-Bags in the Zhoutouzui Immersed Tunnel Project
(1 Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060; 2 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641)
Download: PDF (3325KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 文章以广州市洲头咀沉管隧道模袋砂围堰工程为背景,通过现场动态实测,揭示了模袋砂围堰施工过程变形发展规律;结合既有研究成果,明确了围堰位移突变的内在机理,提出了围堰设计施工主要控制指标,且通过精细化有限元模型计算验证。研究结果表明:模袋砂围堰施工过程不同位置位移响应规律和程度不尽相同,局部位移出现突变,其中竖向受到的影响较水平向显著;围堰位移突变主要因模袋砂抽水使浮容重逐渐变为干容重,增加了上层模袋砂对下层模袋砂的压力,使模袋砂压扁而发生较大位移;受上部模袋砂围堰的作用,地基土经历竖向压密→侧向挤压→局部滑动三个阶段,使围堰最大水平和竖向位移出现在顶部与坡脚。数值计算表明,围堰未发生滑移破坏,且未形成贯通的塑性区而处于稳定状态,与理论分析的结论一致,围堰应以堆高为主控指标。用常规基坑支护结构位移限值评判模袋砂围堰力学状态存在不足,同时围堰的坡率设计应充分考虑模袋加筋作用。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词:   
Abstract: The deformation development law of cofferdam with geotextile sand bags is explored by field measure? ment based on the construction process of the Zhoutouzui immersed tunnel in Guangzhou. Based on the existing research results, the deformation saltation mechanism is determined, the main control indexes for design and construction of the cofferdam are proposed and the rationality is verified by a refined FEM calculation. The results show that:1) the response law and degree of deformation are different at different positions during the construction of the geotextile sand bag cofferdam, with saltation of the local displacement and a larger influence in the vertical direction than in the horizontal direction; 2) the main reason for deformation saltation of the cofferdam is that the buoyant unit weight turns into a dry unit weight due to the dewatering of the geotextile sand bag, which increases the overlying pressure of the upper geotextile bag to the lower ones and flattens them and causes large deformation; and 3) the foundation soil experiences three phases of vertical pressure consolidation, lateral extrusion and local sliding, which cause the maximum vertical and horizontal displacements to occur at the top and foot of the cofferdam. The numerical calculation results show that: 1) it is stable since no sliding failure occurs at the cofferdam and no cut-through plastic zone is formed, which is consistent with the results deduced by theoretical analysis; 2) the stack height of cofferdam should be taken as the control index; and 3) there are some weak points in using the displacement limit value for traditional foundation pit support structure to judge the mechanical state of the cofferdam with geotextile sand bags, and the design for the slope ratio of the cofferdam should fully consider the reinforcement effect of the geotextile sand bags.
KeywordsImmersed tunnel,   Cofferdam with geotextile sand bags,   Deformation characteristics,   Control index,   Field measurement,   Numerical simulation     
基金资助:

基金项目:国家自然科学基金资助项目(51108190); 亚热带建筑科学国家重点实验室自主研究课题资助项目(2015ZC20).

作者简介: 作者简介:何则干(1978-),男,博士,高级工程师,主要从事土工合成材料、隧道与地下结构方面的研究工作,E-mail:13808843193@163.com.
引用本文:   
.洲头咀沉管隧道模袋砂围堰施工变形实测与数值模拟[J]  现代隧道技术, 2017,V54(6): 180-186
.Measurement and Numerical Simulation of Deformation of the Cofferdam with Geotextile Sand-Bags in the Zhoutouzui Immersed Tunnel Project[J]  MODERN TUNNELLING TECHNOLOGY, 2017,V54(6): 180-186
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2017/V54/I6/180
 
没有本文参考文献
[1] 刘飞香 1,2.SCDZ133智能型隧道多功能作业台车及其施工技术[J]. 现代隧道技术, 2019,56(4): 1-7
[2] 周文波 吴惠明 赵 峻.泥岩地层常压刀盘盾构的掘进策略与分析[J]. 现代隧道技术, 2019,56(4): 8-15
[3] 陈卓立 1,2 朱训国 1,2 赵德深 1,2 王云平 1,2.深埋隧洞让压支护结构的锚固机理探究[J]. 现代隧道技术, 2019,56(4): 16-22
[4] 王全胜.矩形盾构法隧道管片分块案例分析及分块原则[J]. 现代隧道技术, 2019,56(4): 23-29
[5] 张 恒 1 朱亦墨 1 林 放 1 陈寿根 1 杨家松 2.基于Q系统的地下洞库中台阶最佳开挖高度研究[J]. 现代隧道技术, 2019,56(4): 30-37
[6] 李 好.大断面岩溶隧道贯通段地质情况的无线电波透视试验探测[J]. 现代隧道技术, 2019,56(4): 38-42
[7] 岑培山 1 田坤云 2 王喜民 3.蒙华铁路阳山隧道瓦斯危害性评估研究[J]. 现代隧道技术, 2019,56(4): 43-49
[8] 朱建峰 1 宫全美 2.软土地层盾构隧道长期沉降离心试验研究[J]. 现代隧道技术, 2019,56(4): 49-55
[9] 陈柚州 1 任 涛 2 邓 朋 2 王 斌 3.基于人工蜂群优化小波神经网络的隧道沉降预测[J]. 现代隧道技术, 2019,56(4): 56-61
[10] 王登茂 滕振楠 田志宇 陈志学.桃园至巴中高速公路八庙隧道非常规岩爆段病害处治与设计反思[J]. 现代隧道技术, 2019,56(4): 62-68
[11] 吴树元 1 程 勇 1 谢全敏 2 刘继国 1 陈必光 1.西藏米拉山隧道围岩大变形成因分析[J]. 现代隧道技术, 2019,56(4): 69-73
[12] 王 睢 1,2,3 钟祖良 3 刘新荣 3 吴 波 1,2,4 赵勇博 1,2 李占涛 1,2.基于D-P准则有压圆形衬砌隧洞弹塑性解[J]. 现代隧道技术, 2019,56(4): 74-80
[13] 李 明 严松宏 潘春阳 张旭斌.富水大断面黄土隧道开挖流固耦合效应分析[J]. 现代隧道技术, 2019,56(4): 81-88
[14] 张 凯 1 陈寿根 2 霍晓龙 3 谭信荣 4.岩溶地区隧道涌水风险的可拓评价模型及应用[J]. 现代隧道技术, 2019,56(4): 89-96
[15] 李 杰 1 张 斌 1 付 柯 1 马 超 1 郭京波 1 牛得草 2.基于现场掘进数据的复合地层盾构掘进性能预测方法研究[J]. 现代隧道技术, 2019,56(4): 97-104
Copyright 2010 by 现代隧道技术