Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2015, Vol. 52 Issue (3) :95-102    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
A Study of the Dynamic Response Characteristics of a Tunnel Structure Through an Interface of Soft and Hard Rock
(1 Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031;2 Guangzhou Metro Design and Research Institute Co. Ltd., Guangzhou 510308; 3 Fujian University of Technology, Fuzhou 350014)
Download: PDF (1135KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Tunnel portal sections passing through an interface of hard and soft rock are vulnerable to severe damage at this high intensity seismic area. Based on the Longxi tunnelon the Chengdu-Wenchuan expressway, the earthquake dynamic response of a tunnel portal structure was analyzed using the numerical simulation method for various inclination angles of the soft/hard rock interface. The results show that: 1) the relative displacement of the tunnel lining structure increases obviously during a strong earthquake when the tunnel structure passes through the interface between soft and hard rock, and the relative displacement of the tunnel lining in the diagonal direction is higher than the relative horizontal displacement at the tunnel crown and invert; 2) the relative displacement of the tunnel structure at the soft-rock side of the interface increases with the decrease of the inclination angle, while the earthquake motion has little influence on the tunnel structure deformation at the hard-rock side; and 3) under an inclination angle <45°, the earthquake motion has a crucial influence on the safety of the upper tunnel structures (crown and spandrel) with some safety factors being less than 1, and under an inclination angle >45°, the seismic motion has a significant effect on the lower part of the tunnel structure (invert and arch springing).
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
SHEN Yu-Sheng-1
ZOU Cheng-Lu-2
JIN Zong-Zhen-3
WANG Jing-Wei-1
KeywordsTunnel engineering   Interface between soft and hard rock   Dynamic response   Relative displacement   High-intensity earthquake     
Abstract: Tunnel portal sections passing through an interface of hard and soft rock are vulnerable to severe damage at this high intensity seismic area. Based on the Longxi tunnelon the Chengdu-Wenchuan expressway, the earthquake dynamic response of a tunnel portal structure was analyzed using the numerical simulation method for various inclination angles of the soft/hard rock interface. The results show that: 1) the relative displacement of the tunnel lining structure increases obviously during a strong earthquake when the tunnel structure passes through the interface between soft and hard rock, and the relative displacement of the tunnel lining in the diagonal direction is higher than the relative horizontal displacement at the tunnel crown and invert; 2) the relative displacement of the tunnel structure at the soft-rock side of the interface increases with the decrease of the inclination angle, while the earthquake motion has little influence on the tunnel structure deformation at the hard-rock side; and 3) under an inclination angle <45°, the earthquake motion has a crucial influence on the safety of the upper tunnel structures (crown and spandrel) with some safety factors being less than 1, and under an inclination angle >45°, the seismic motion has a significant effect on the lower part of the tunnel structure (invert and arch springing).
KeywordsTunnel engineering,   Interface between soft and hard rock,   Dynamic response,   Relative displacement,   High-intensity earthquake     
published: 2014-08-23
Cite this article:   
SHEN Yu-Sheng-1, ZOU Cheng-Lu-2, JIN Zong-Zhen-3 etc .A Study of the Dynamic Response Characteristics of a Tunnel Structure Through an Interface of Soft and Hard Rock[J]  MODERN TUNNELLING TECHNOLOGY, 2015,V52(3): 95-102
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2015/V52/I3/95
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY