Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2016, Vol. 53 Issue (2) :173-181    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Field Dewatering Test for Metro Tunnelling in a Water-Rich Sand Stratum
(1 Beijing Urban Engineering Design & Research Institute Co. Ltd., Beijing 100037; 2 Ocean University of China, Qingdao 266100; 3 Jianke Geotechnical Engineering Co. Ltd.of Qingdao Ocean University, Qingdao 266000)
Download: PDF (4380KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract  Considering that dewatering is essential for metro construction in water-rich sand strata, and using a typical section of the running tunnel from Hexi Station to Hedong Station as an example, the dewatering effect and its influence on the surrounding environment were researched in a test section in Qingdao based on an analysis of the physical and mechanical properties of the sand stratum, which had a high number of clay particles. The results show that groundwater can be lowered to a level between the invert and sidewall under normal conditions by tube well dewatering, but this will be difficult in a combined rock and soil stratum; lowering the water level of 3.57~4.73 m may cause ground settlement of-5.58~ -10.72 mm; the total ground settlements are -24.93~-75.72 mm, of which the settlement induced by dewatering is 14.15%~24.65%; the total building settlements are -18.37~-7.25 m, of which the settlement induced by dewatering is 17.40%~29.05% (about -5.1~-2.1 mm), showing that dewatering has little effect on the surrounding environment. Compared to construction with no dewatering, adopting tube well dewatering and condulet reinforcement can improve construction efficiency in dry seasons such as autumn and winter while it may induce a wide range of settlements in rainy seasons, which necessitates enhanced reinforcement strength of the stratum. The dewatering effect was also calculated by FLAC3D software, indicating that the calculated results agree well with the tested ones.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsWater-rich sand stratum   Combined rock and soil stratum   Metro tunnel   Dewatering construction   Settlement     
Abstract: Considering that dewatering is essential for metro construction in water-rich sand strata, and using a typical section of the running tunnel from Hexi Station to Hedong Station as an example, the dewatering effect and its influence on the surrounding environment were researched in a test section in Qingdao based on an analysis of the physical and mechanical properties of the sand stratum, which had a high number of clay particles. The results show that groundwater can be lowered to a level between the invert and sidewall under normal conditions by tube well dewatering, but this will be difficult in a combined rock and soil stratum; lowering the water level of 3.57~4.73 m may cause ground settlement of-5.58~ -10.72 mm; the total ground settlements are -24.93~-75.72 mm, of which the settlement induced by dewatering is 14.15%~24.65%; the total building settlements are -18.37~-7.25 m, of which the settlement induced by dewatering is 17.40%~29.05% (about -5.1~-2.1 mm), showing that dewatering has little effect on the surrounding environment. Compared to construction with no dewatering, adopting tube well dewatering and condulet reinforcement can improve construction efficiency in dry seasons such as autumn and winter while it may induce a wide range of settlements in rainy seasons, which necessitates enhanced reinforcement strength of the stratum. The dewatering effect was also calculated by FLAC3D software, indicating that the calculated results agree well with the tested ones.
KeywordsWater-rich sand stratum,   Combined rock and soil stratum,   Metro tunnel,   Dewatering construction,   Settlement     
Cite this article:   
.Field Dewatering Test for Metro Tunnelling in a Water-Rich Sand Stratum[J]  MODERN TUNNELLING TECHNOLOGY, 2016,V53(2): 173-181
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2016/V53/I2/173
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY