Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2017, Vol. 54 Issue (4) :160-166    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Application of Twin-Tube Complementary Ventilation in Highway Tunnels
(1 Shenzhen-Zhongshan Passageway Management Centre, Guangzhou 510000; Shanxi Provincial Major Laboratory for Highway Bridge& Tunnel, Xi′an 710064)
Download: PDF (2223KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In light of an unbalanced ventilation load between the left tube and right tube of 4~7 km-long tunnels, a new method named twin-tube complementary ventilation is presented. Two air exchange cross channels were set up between the left tunnel tube and right tunnel tube, and extra jet fans were installed in the downhill tunnel in order to transport the surplus fresh air to the uphill tunnel through one air exchange cross channel to attenuate the pollutant concentrations and make the polluted air in the uphill tunnel flow into the downhill tunnel through another air exchange cross channel and reduce the air velocity in the uphill tunnel, by which the air quality of the two tunnel tubes can meet the relative sanitary standard. The design theory and calculation formulas were derived in detail and were utilized to conduct the design of a ventilation system for a certain tunnel. With the complementary ventilation network, the configuration scale of the fans was calculated and the economic benefits were analyzed. The results in? dicate the complementary ventilation technology can not only meet the tunnel ventilation demand but also reduce the initial investment and operating costs for ventilation without any ventilation shafts.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsHighway tunnel   Complementary ventilation   Air exchange     
Abstract: In light of an unbalanced ventilation load between the left tube and right tube of 4~7 km-long tunnels, a new method named twin-tube complementary ventilation is presented. Two air exchange cross channels were set up between the left tunnel tube and right tunnel tube, and extra jet fans were installed in the downhill tunnel in order to transport the surplus fresh air to the uphill tunnel through one air exchange cross channel to attenuate the pollutant concentrations and make the polluted air in the uphill tunnel flow into the downhill tunnel through another air exchange cross channel and reduce the air velocity in the uphill tunnel, by which the air quality of the two tunnel tubes can meet the relative sanitary standard. The design theory and calculation formulas were derived in detail and were utilized to conduct the design of a ventilation system for a certain tunnel. With the complementary ventilation network, the configuration scale of the fans was calculated and the economic benefits were analyzed. The results in? dicate the complementary ventilation technology can not only meet the tunnel ventilation demand but also reduce the initial investment and operating costs for ventilation without any ventilation shafts.
KeywordsHighway tunnel,   Complementary ventilation,   Air exchange     
Cite this article:   
.Application of Twin-Tube Complementary Ventilation in Highway Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2017,V54(4): 160-166
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2017/V54/I4/160
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY