Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2017, Vol. 54 Issue (6) :70-76    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Deformation Prediction for a Tunnel Rock Mass Based on the Multi-Scale Combination Kernel Extreme Learning Machine Model
(1 School of Civil Engineering, Chongqing Three Gorges University, Chongqing 404100; 2 Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, Wuhan 430010; 3 College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059; 4 Department of Building and Environmental Safety, Chongqing Vocational Institute of Safety & Technology, Chongqing 404100)
Download: PDF (1177KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Tunnel rock deformation sequences are nonlinear and it is therefore difficult to obtain satisfactory preci? sion in predictions by conventional methods. To improve the prediction accuracy of tunnel surrounding rock deformation, a model of a multi-scale extreme learning machine with a combination kernel is proposed based on measured deformation data. The measured deformation data is divided into different scale sequences using the empirical mode decomposition technique, a sequence of each component is predicted by the combination of the extreme learning machine and the final forecast value is obtained by combining the results of each component. For the improved model, a compound kernel parameter is obtained by the linear weighting of the radial basis function and polynomial kernel function, kernel parameters and weighting coefficients are optimized by particle swarm optimization,the prediction results of the model are discussed using Markov Chain and the prediction accuracy for tunnel surrounding rock deformation is improved. The predicted surrounding rock deformation of the Daxiangling tunnel shows that higher accuracy can be achieved in both the one-step prediction and multi-step prediction of tunnel surrounding rock deformation using the improved model, the proposed model is better than the Bayesian regularization BP neural network and the deformation is acceptable compared to the measured deformation.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsTunnel engineering   Ensemble empirical mode decomposition   Combination kernel extreme learning machine   Particle swarm optimization   Markov chain     
Abstract: Tunnel rock deformation sequences are nonlinear and it is therefore difficult to obtain satisfactory preci? sion in predictions by conventional methods. To improve the prediction accuracy of tunnel surrounding rock deformation, a model of a multi-scale extreme learning machine with a combination kernel is proposed based on measured deformation data. The measured deformation data is divided into different scale sequences using the empirical mode decomposition technique, a sequence of each component is predicted by the combination of the extreme learning machine and the final forecast value is obtained by combining the results of each component. For the improved model, a compound kernel parameter is obtained by the linear weighting of the radial basis function and polynomial kernel function, kernel parameters and weighting coefficients are optimized by particle swarm optimization,the prediction results of the model are discussed using Markov Chain and the prediction accuracy for tunnel surrounding rock deformation is improved. The predicted surrounding rock deformation of the Daxiangling tunnel shows that higher accuracy can be achieved in both the one-step prediction and multi-step prediction of tunnel surrounding rock deformation using the improved model, the proposed model is better than the Bayesian regularization BP neural network and the deformation is acceptable compared to the measured deformation.
KeywordsTunnel engineering,   Ensemble empirical mode decomposition,   Combination kernel extreme learning machine,   Particle swarm optimization,   Markov chain     
Cite this article:   
.Deformation Prediction for a Tunnel Rock Mass Based on the Multi-Scale Combination Kernel Extreme Learning Machine Model[J]  MODERN TUNNELLING TECHNOLOGY, 2017,V54(6): 70-76
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2017/V54/I6/70
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY