Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2018, Vol. 55 Issue (1) :194-202    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Structure Deformation Caused by Shield Tunnel Excavation Above Existing Tunnels of Shenzhen Metro
(1 School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083; 2 China Construction Communications Engrg. Group Corp. Ltd., Beijing 100161)
Download: PDF (4599KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract With the rapid development of subway network, it is more and more common for shield tunnels to pass through existing adjacent tunnels. The effect of adjacent shield tunnel construction on existing underlying tunnels is more complicated than ordinary metro tunnel construction. Based on the special construction condition of two-tube shield tunnel of Shenzhen metro line 9 overlapped above the existing two-tube tunnel of Shenzhen metro line 1, the laws of horizontal and vertical deformation of existing tunnel tubes induced by new shield tunneling are studied by numerical simulation and in-situ automatic monitoring, and the influence of earth pressure on the deformation of existing tunnel tubes is analyzed. The results show the in-situ automatic monitoring data basically comply with that of the numerical simulation; the effects of the excavation of the first new tunnel tube on existing tunnel tubes are larger than that of the second tube. The existing tunnel tubes generally uplift in the vertical direction, with a maximum accumulative uplift volume of 2.2 mm. The horizontal deviation of existing tunnel tubes complies with the direction of the shield driving, with the maximum horizontal deviation around 1.4 mm. The effect of the earth pressure on horizontal displacement of existing left and right tubes is roughly the same, and the horizontal displacement increases with an increase of earth pressure. Additionally, the effect of the earth pressure on the vertical displacement of the existing left and right tubes is different: the uplift volume of the left tube decreases with an increase of the earth pressure while the uplift volume of the right tube increases with an increase of the earth pressure.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsShenzhen Metro   Overlapped tunnel tubes   Small distance   Construction above existing tunnel   Existing tunnels   Deformation     
Abstract: With the rapid development of subway network, it is more and more common for shield tunnels to pass through existing adjacent tunnels. The effect of adjacent shield tunnel construction on existing underlying tunnels is more complicated than ordinary metro tunnel construction. Based on the special construction condition of two-tube shield tunnel of Shenzhen metro line 9 overlapped above the existing two-tube tunnel of Shenzhen metro line 1, the laws of horizontal and vertical deformation of existing tunnel tubes induced by new shield tunneling are studied by numerical simulation and in-situ automatic monitoring, and the influence of earth pressure on the deformation of existing tunnel tubes is analyzed. The results show the in-situ automatic monitoring data basically comply with that of the numerical simulation; the effects of the excavation of the first new tunnel tube on existing tunnel tubes are larger than that of the second tube. The existing tunnel tubes generally uplift in the vertical direction, with a maximum accumulative uplift volume of 2.2 mm. The horizontal deviation of existing tunnel tubes complies with the direction of the shield driving, with the maximum horizontal deviation around 1.4 mm. The effect of the earth pressure on horizontal displacement of existing left and right tubes is roughly the same, and the horizontal displacement increases with an increase of earth pressure. Additionally, the effect of the earth pressure on the vertical displacement of the existing left and right tubes is different: the uplift volume of the left tube decreases with an increase of the earth pressure while the uplift volume of the right tube increases with an increase of the earth pressure.
KeywordsShenzhen Metro,   Overlapped tunnel tubes,   Small distance,   Construction above existing tunnel,   Existing tunnels,   Deformation     
Cite this article:   
.Structure Deformation Caused by Shield Tunnel Excavation Above Existing Tunnels of Shenzhen Metro[J]  MODERN TUNNELLING TECHNOLOGY, 2018,V55(1): 194-202
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2018/V55/I1/194
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY