Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2019, Vol. 56 Issue (5) :50-57    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Design Optimization for the Rapid Excavation of Inclined Shaft of the Long Tunnel and Construction Period Estimation
(1 State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300354;2 China Railway 19th Bureau Group Co., Ltd,Beijing 100176)
Download: PDF (2004KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Based on the construction of the Aobaoliang Tunnel, this paper discussed the necessity of scheme opti? mization of inclined shaft before construction. In light of tight construction and low grade of surrounding rocks, the design schemes for the No. 1 and No. 3 inclined shaft were optimized from the following four aspects of designed alignment, section dimension, mucking equipment and support structure, e.g. 1) the single lane was changed to two lanes to solve the problem of vehicle passing in inclined shaft; 2) reinforcement mesh and cast-in place concrete lining were replaced by single-layer steel fiber reinforced concrete lining, and type I18 profile steel was optimized for type 150 lattice girder, so the cost of two-lane excavation and support structure was reduced. The results of toughness test show that the supporting performance of steel fiber reinforced shotcrete (40 kg/m3) is much better than that of reinforcement mesh, so the shotcrete and construction time is shortened. Due to the alignment adjustment, the lengths of main and auxiliary bore were balanced and the construction progress in auxiliary bore was speeded up. The mucking efficiency was improved and the gas emissions were decreased attributed to the design consisting of one electric hydraulic excavator and five dump trucks. Finally the construction period of main tunnel was shortened by 5.5 months and the labor cost of the Aobaoliang tunnel was reduced by RMB ¥15 million after optimization of the inclined shaft scheme.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
ZHAO Licai1
2 YU Jianxing1
KeywordsInclined shaft   Lane   Mucking equipment   Support structure   Design optimization     
Abstract: Based on the construction of the Aobaoliang Tunnel, this paper discussed the necessity of scheme opti? mization of inclined shaft before construction. In light of tight construction and low grade of surrounding rocks, the design schemes for the No. 1 and No. 3 inclined shaft were optimized from the following four aspects of designed alignment, section dimension, mucking equipment and support structure, e.g. 1) the single lane was changed to two lanes to solve the problem of vehicle passing in inclined shaft; 2) reinforcement mesh and cast-in place concrete lining were replaced by single-layer steel fiber reinforced concrete lining, and type I18 profile steel was optimized for type 150 lattice girder, so the cost of two-lane excavation and support structure was reduced. The results of toughness test show that the supporting performance of steel fiber reinforced shotcrete (40 kg/m3) is much better than that of reinforcement mesh, so the shotcrete and construction time is shortened. Due to the alignment adjustment, the lengths of main and auxiliary bore were balanced and the construction progress in auxiliary bore was speeded up. The mucking efficiency was improved and the gas emissions were decreased attributed to the design consisting of one electric hydraulic excavator and five dump trucks. Finally the construction period of main tunnel was shortened by 5.5 months and the labor cost of the Aobaoliang tunnel was reduced by RMB ¥15 million after optimization of the inclined shaft scheme.
KeywordsInclined shaft,   Lane,   Mucking equipment,   Support structure,   Design optimization     
Cite this article:   
ZHAO Licai1, 2 YU Jianxing1 .Design Optimization for the Rapid Excavation of Inclined Shaft of the Long Tunnel and Construction Period Estimation[J]  MODERN TUNNELLING TECHNOLOGY, 2019,V56(5): 50-57
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2019/V56/I5/50
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY