Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2020, Vol. 57 Issue (1) :76-82    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Calculation Method for the Surrounding Rock Pressure of Mined Lower Tunnel Structure of a Metro Station Built by Combination of Open Cut and Mined Method
(1 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031; 2 Tangshan Graduate School, Southwest Jiaotong University, Tangshan 063000; 3 China Railway Tunnel Group Co., Ltd, Nanning 530000)
Download: PDF (1532KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Restricted by the topography, the Qingxiushan metro station of Nanning rail transit line 3 is built by open cut method for the upper part and mined method for the lower part. The lower mined tunnel is classified as the one in the transition zone from the shallow overburden to the deep overburden, and it′s significant for proper equivalent calculation of the upper open-cut excavated station hall to ensure structure safety of mined tunnel regarding structure design. The vertical pressure of surrounding rocks of the lower mined tunnel is 150.69 kN/m and the horizontal pressure of surrounding rock is 95.28 kN/m when the upper station hall structure is equivalent to soil body;the vertical pressure of surrounding rocks of the lower mined tunnel is 439.83 kN/m and the horizontal pressure of surrounding rock is 103.28 kN/m when the upper station hall structure is equivalent to additional load. The numerical calculation shows that the maximum safety factor is 60.29 (at haunch) and the minimum safety factor is 7.39(at bottom) when the upper station hall structure is equivalent to soil body; the maximum safety factor is 21.558 (at arch spring) and the minimum safety factor is 2.529 (at bottom) when the upper station hall structure is equivalent to additional load. It is suggested that it is proper for the upper station hall structure to be equivalent to additional load regarding the pressure calculation of surrounding rocks of the mined tunnel.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
YAN Tao1 LI Kunjie1 QIN Pengcheng1 CHEN Jingyu1
2 LIN Rui3 ZUO Qiang3
KeywordsMetro station   Open cut and mined construction   Equivalent treatment of open cut structure   Pressure of surrounding rocks   Structure safety     
Abstract: Restricted by the topography, the Qingxiushan metro station of Nanning rail transit line 3 is built by open cut method for the upper part and mined method for the lower part. The lower mined tunnel is classified as the one in the transition zone from the shallow overburden to the deep overburden, and it′s significant for proper equivalent calculation of the upper open-cut excavated station hall to ensure structure safety of mined tunnel regarding structure design. The vertical pressure of surrounding rocks of the lower mined tunnel is 150.69 kN/m and the horizontal pressure of surrounding rock is 95.28 kN/m when the upper station hall structure is equivalent to soil body;the vertical pressure of surrounding rocks of the lower mined tunnel is 439.83 kN/m and the horizontal pressure of surrounding rock is 103.28 kN/m when the upper station hall structure is equivalent to additional load. The numerical calculation shows that the maximum safety factor is 60.29 (at haunch) and the minimum safety factor is 7.39(at bottom) when the upper station hall structure is equivalent to soil body; the maximum safety factor is 21.558 (at arch spring) and the minimum safety factor is 2.529 (at bottom) when the upper station hall structure is equivalent to additional load. It is suggested that it is proper for the upper station hall structure to be equivalent to additional load regarding the pressure calculation of surrounding rocks of the mined tunnel.
KeywordsMetro station,   Open cut and mined construction,   Equivalent treatment of open cut structure,   Pressure of surrounding rocks,   Structure safety     
Cite this article:   
YAN Tao1 LI Kunjie1 QIN Pengcheng1 CHEN Jingyu1, 2 LIN Rui3 ZUO Qiang3 .Calculation Method for the Surrounding Rock Pressure of Mined Lower Tunnel Structure of a Metro Station Built by Combination of Open Cut and Mined Method[J]  MODERN TUNNELLING TECHNOLOGY, 2020,V57(1): 76-82
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2020/V57/I1/76
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY