Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2022, Vol. 59 Issue (4) :158-166    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
A 3D Numerical Simulation Study on the Ventilation of T-Shaped Tunnels with Different Bifurcation Angles during Construction
 
(1. School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070; 2. Hubei Key Laboratory of Roadway Bridge and Structure Engineering, Wuhan University of Technology, Wuhan 430010)
Download: PDF (3848KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Guide  
Abstract To investigate the influence of the bifurcation angle on the diffusion of blasting gas in T-shaped tunnels built by the drilling and blasting method, this study, on the basis of the bifurcation structure formed by the left main tunnel and 38# cross tunnel in the Yuelongmen Tunnel on the Chengdu-Lanzhou Railway, establishes the 3D mesh models with bifurcation angles of 45°, 60°, 75° and 90° respectively, carries out numerical simulations of the tunnel ventilation by using Fluent and, taking into account the local loss theory, investigates the pattern of wind energy loss at the bifurcation. The results show that in the process of ventilating for the construction of T-shaped bifurcated tunnels, a large ventilation blind zone appears near the side of the obtuse angle of the cross tunnel and the downstream side of the main tunnel without bifurcation, and the range of the blind zone expands with the increase of the bifurcation angle. Comparing the time required to discharge the blasting gas under each construction condition, it is found that the larger the bifurcation angle of the tunnel is, the worse the ventilation effect will be, and the longer the required time will be for ventilation. Through the deduction of the relationship equation between the local loss coefficient and the bifurcation angle, it is also found that the local loss coefficient of the main tunnel is almost independent of the bifurcation angle, while the local loss coefficient of the cross tunnel is positively correlated to the bifurcation angle of the tunnel.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
LI Weilin1 ZHANG Guang1 ZHU Yingwei1 HU Shaohua1
2
KeywordsRailway tunnel   Bifurcation angle   Diffusion pattern   Ventilation control   Local loss   Numerical simula? tion     
Abstract: To investigate the influence of the bifurcation angle on the diffusion of blasting gas in T-shaped tunnels built by the drilling and blasting method, this study, on the basis of the bifurcation structure formed by the left main tunnel and 38# cross tunnel in the Yuelongmen Tunnel on the Chengdu-Lanzhou Railway, establishes the 3D mesh models with bifurcation angles of 45°, 60°, 75° and 90° respectively, carries out numerical simulations of the tunnel ventilation by using Fluent and, taking into account the local loss theory, investigates the pattern of wind energy loss at the bifurcation. The results show that in the process of ventilating for the construction of T-shaped bifurcated tunnels, a large ventilation blind zone appears near the side of the obtuse angle of the cross tunnel and the downstream side of the main tunnel without bifurcation, and the range of the blind zone expands with the increase of the bifurcation angle. Comparing the time required to discharge the blasting gas under each construction condition, it is found that the larger the bifurcation angle of the tunnel is, the worse the ventilation effect will be, and the longer the required time will be for ventilation. Through the deduction of the relationship equation between the local loss coefficient and the bifurcation angle, it is also found that the local loss coefficient of the main tunnel is almost independent of the bifurcation angle, while the local loss coefficient of the cross tunnel is positively correlated to the bifurcation angle of the tunnel.
KeywordsRailway tunnel,   Bifurcation angle,   Diffusion pattern,   Ventilation control,   Local loss,   Numerical simula? tion     
Fund: 
Cite this article:   
LI Weilin1 ZHANG Guang1 ZHU Yingwei1 HU Shaohua1, 2 .A 3D Numerical Simulation Study on the Ventilation of T-Shaped Tunnels with Different Bifurcation Angles during Construction[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(4): 158-166
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2022/V59/I4/158
 
No references of article
[1] LIU Zhaowei.Research on the Technology for the Shield Tunnel Crossing the Railway Marshalling Station in the Pebble-boulder Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(4): 226-233
[2] YU Jianyou1 JIANG Yifan2 LIN Ming2 LIU Jianqi1 CAI Libin2 JIANG Xinzheng2 WANG Zhijie2 ZHOU Ping2.Thickness Calculation Method for the Insulation Layer of the Tunnel in Cold Region Considering Seepage and Fissures[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(4): 108-117
[3] ZHOU Xiaojun1 NING Yuansi2 YANG Changyu3.Design and Engineering Application of Prefabricated Structure for Secondary Lining Arch of Double-Track Railway Tunnels Constructed by the Mining Method[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(4): 204-217
[4] WEN Yanxin1 HUO Yongpeng2 WU Yue2 CHANG Xin1 ZHANG Tian2 YAN Qixiang2.Assembly Force and Waterproofing Performance of Segment Sealing Gasket in High Water Pressure Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(4): 273-
[5] WANG Mingnian1,2 GUO Xiaohan1,2 NI Guangbin3 YU Li1,2 LI Chunhui1,2.A Discussion on the Control Standards for Smoke CO Concentration during Fires in High-altitude Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(3): 40-45
[6] TANG Yan.Research on Risk Assessment and Management Methods for Projects of Railway Tunnels Passing under Expressways[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(3): 220-226
[7] MIAO Chenyang1 HUANG Qiangbing1,2 GOU Yuxuan1 TENG Hongquan3 JIA Shaochun4.Study on the Impact of Shield Tunnel Under-crossing at Ground Fissure Site on Existing Utility Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(3): 155-165
[8] YAO Jie1,2.Analysis on Factors Influencing the Pneumatic Load during Train Operation in High-speed Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(3): 166-171
[9] ZHU Muyuan1 WEI Lifeng1 FANG Yong1 FU Qiang2 GAO Tengda2 PU Song1.Analysis and Control of the Settlement of Super-large Diameter Shield Tunnel Passing under the Yellow River Embankment[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(3): 211-219
[10] WEI Zhiyuan1 FENG Jimeng2 YU Longping2.Study on the Mechanical Behavior of the the Double-layer Arch Cover Initial Support during the Construction of Subway Stations by Arch-cover Method[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(3): 265-274
[11] YU Lingfeng.Research on the Characteristics of Structural Dynamic Response and the Seismic Mechanism of Mountain Tunnels with Different Depths[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(3): 227-235
[12] SHI Yufeng1,2 CAO Chengwei1,2 TAN Yifan3 XU Changjie1,2,4 ZHANG Lichen5 HUANG Yong5.Study on Dynamic Response and Long-term Settlement of Water-saturated Weathered Soft Rocks at the Base of Subway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(2): 86-95
[13] WANG Mingnian1,2 YANG Henghong1,2 ZHANG Yiteng1,2 LIU Kerui1,2 YU Li1,2.Research and Application of the Safety Coefficient Method for the Middle Rock Pillar of Parallel Tunnels with Small Clear Distance[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(2): 11-19
[14] ZHANG Fujun1 HU Jun2,3 DUAN Yu4 ZHU Caihui4.Optimization and Application of the Treatment Schemes for Water Inrush in a Water-rich Tunnel in Fault Zones[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(2): 122-131
[15] CHENG Yongchun1 ZENG Xiangji1 WANG Zhenjia1 WANG Dong1 YANG Yun2 WU Yongjing3 DONG Ping3, 4.Experimental Study and Numerical Simulation of Crystallization-induced Blockage in Drainage Pipes in Karst Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(2): 159-166
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY