Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2020, Vol. 57 Issue (2) :104-109    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Influence of Earth-Rock Interface Height on Safety of Primary Support Structure of the Shallow-buried Loess Tunnel
(1 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031; 2 Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031)
Download: PDF (1487KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In order to understand the influence of earth-rock interface height of the shallow-buried loess tunnel on safety of primary support structure, the effect of earth-rock interface height and position on safety of primary support is studied by numerical simulation based on the Linxian tunnel. The results show that: the earth-rock interface results in sudden change of safety factor of the primary support structure and the distribution of safety factor is asymmetric when the interface is inclined. Under the same buried depth, the asymmetric pressure above the earth-rock interface decreases while the asymmetric pressure below the earth-rock interface increases with downward movement of the earth-rock interface. Under the same interface depth, the asymmetric pressures of the left and right sections of the primary support increase with the increase of the buried depth. When the earth-rock interface is located in upper heading,middle heading and lower heading, and the interface inclination is 10°, the load can be calculated by increasing the load by 20% on the left side of tunnel or reducing resistance coefficient by 20% on the right side of tunnel.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsShallow-buried tunnel   Earth-rock interface   Primary support   Safety factor     
Abstract: In order to understand the influence of earth-rock interface height of the shallow-buried loess tunnel on safety of primary support structure, the effect of earth-rock interface height and position on safety of primary support is studied by numerical simulation based on the Linxian tunnel. The results show that: the earth-rock interface results in sudden change of safety factor of the primary support structure and the distribution of safety factor is asymmetric when the interface is inclined. Under the same buried depth, the asymmetric pressure above the earth-rock interface decreases while the asymmetric pressure below the earth-rock interface increases with downward movement of the earth-rock interface. Under the same interface depth, the asymmetric pressures of the left and right sections of the primary support increase with the increase of the buried depth. When the earth-rock interface is located in upper heading,middle heading and lower heading, and the interface inclination is 10°, the load can be calculated by increasing the load by 20% on the left side of tunnel or reducing resistance coefficient by 20% on the right side of tunnel.
KeywordsShallow-buried tunnel,   Earth-rock interface,   Primary support,   Safety factor     
Cite this article:   
.Influence of Earth-Rock Interface Height on Safety of Primary Support Structure of the Shallow-buried Loess Tunnel[J]  MODERN TUNNELLING TECHNOLOGY, 2020,V57(2): 104-109
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2020/V57/I2/104
 
No references of article
[1] MA Hui1 GAO Mingzhong2.Discussion on the Construction Management of Sichuan-Tibet Railway Tunnel Based on System Engineering Methodology[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 1-8
[2] WANG Mingnian1,2 GUO Xiaohan1,2 YU Li1,2 LI Chunhui1,2 CHEN Shuwang3.Study on the Location Selection of Emergency Rescue Station of the Extra-long Railway Tunnel at High Altitude[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 9-14
[3] LI Chang1,2 WANG Gang1,2 QIU Wenge1,2,3 GONG Lun1,2 ZHAO Yingchun4 WANG Qiuhui4.Research and Application of Support Resistant Limiting Dampers in the Tunnel with High Horizontal Geostress[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 15-29
[4] LIAO Jun1 DONG Qian1 LIANG Hongyong2 JIAN Bo2 SHI Yuchuan1,3 GONG Hongwei1.Preliminary Study on the Classification Indexes of Surrounding Rock for the Highway Tunnel in Nearly Horizontal Red-bed Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 25-29
[5] LU Song1,2 WANG Xu1,2 LI Cangsong1,2 MENG Lu1,2.Study on Geological Prediction Technology of HSP Method for TBM Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 30-35
[6] ZHONG Zuliang1,2 GAO Guofu1, 2 CHEN Peng1 YAN Ru1.Discussion on Design for the Liangjiang Ship Sightseeing Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 36-42
[7] HUANG Fujie HE Zegan ZHANG Weimin LIU Shanshan.Application Research of BIM Technology in Engineering Design of the Immersed Tube Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 43-48
[8] TANG Xiaosong1, 2 ZHENG Yingren3 WANG Yongfu1.Application of FEM Strength Reduction Method in Stability Analysis and Control of Tunnel Construction[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 49-55
[9] WU Bo1,2 LAN Yangbin1,2 YANG Shisheng1,2 YANG Jianxin3 PANG Xiaoyu3.Study on Stability of Surrounding Rock Based on Strength Reduction Dynamic Analysis Method[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 56-64
[10] ZHOU Cuiying1,2 LI Ang2,3 LIU Zhen1,2.Study on the Influence of Parallel Fold Structure on Deformation of Tunnel Surrounding Rocks[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 65-74
[11] MA Li1 LIU Yapeng2 LI Sheng3,4 LV Wenda5 XIE Chao3,4 DAI Jinpeng3,4.Study on the Mechanical Behaviors of High-filled Loess Arched Open Cut Tunnel under Different Load Reduction Measures[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 75-84
[12] ZHANG Bingwu1 ZHANG Peng1 DAI Zhenhua2 WU Yinghe2 LUO Wei2.Analysis of the Mechanical Behavior of Segments of the Shield-driven Metro Tunnel beneath River Bottom[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 85-90
[13] SUI Xin1 ZHANG Zhengwei1 MING Xuan2 DOWNIE Steven3 PADHANI Shahid3 ZHAO Libo4.Numerical Simulation Analysis of SF6 Gas Leakage in Extra-Long GIL Utility Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 91-98
[14] ZHANG Kefeng.Numerical Simulation of Water Burst in Roadway Excavation with Karst Cave Ahead[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 99-107
[15] ZHANG Yan1, 2 WANG Wei2 DENG Xueqin2.Prediction Model of TBM Advance Rate Based on Relevance Vector Machine[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 108-114
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY