Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2022, Vol. 59 Issue (1) :95-103    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on Mechanical Properties of Tunnel Lining Structure with Spray-applied Waterproofing Membrane
(1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031; 2. State Key Laboratory of Special Functional Waterproof Materials, Beijing 101309; 3. Beijing Oriental Yuhong Waterproof Technology Co., Ltd., Beijing 101309)
Download: PDF (3714KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In order to study the influence of spray-applied waterproofing membrane layer on the mechanical proper? ties of tunnel lining structure, a numerical calculation model of composite lining, spray-applied waterproofing lining and single-shell lining is established according to the mechanical parameters and interface parameters of waterproofing membrane measured by tests, and comparative analysis is made on the mechanical properties of the three types of lining structures. The research results show that: (1) compared with the composite lining, the stress of the secondary lining in the spray-applied waterproofing lining structure is significantly reduced, and the stress of the initial support has little change, but the displacement of both the initial support and the secondary lining increases;(2) in the spray-applied waterproofing lining structure, the whole section of the secondary lining is in the state of small eccentric compression, and the safety factor is greatly improved; (3) spray-applied waterproofing membrane layer can improve the cooperative force-bearing capacity of initial support and secondary lining, and improve the stress state of secondary lining, which is beneficial to improve the safety of secondary lining; and (4) with the increase of the cooperative force-bearing capacity of spray-applied waterproofing lining structure, the internal force of spray-applied waterproofing lining structure will be infinitely close to that of single-shell lining structure.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
JIANG Yajun1 HE Bin1 ZHAO Jumei1 LIU Jitai1 WANG Huqun2
3
KeywordsTunnel works   Lining structure   Numerical calculation   Spray-applied waterproofing   Mechanical proper? ties     
Abstract: In order to study the influence of spray-applied waterproofing membrane layer on the mechanical proper? ties of tunnel lining structure, a numerical calculation model of composite lining, spray-applied waterproofing lining and single-shell lining is established according to the mechanical parameters and interface parameters of waterproofing membrane measured by tests, and comparative analysis is made on the mechanical properties of the three types of lining structures. The research results show that: (1) compared with the composite lining, the stress of the secondary lining in the spray-applied waterproofing lining structure is significantly reduced, and the stress of the initial support has little change, but the displacement of both the initial support and the secondary lining increases;(2) in the spray-applied waterproofing lining structure, the whole section of the secondary lining is in the state of small eccentric compression, and the safety factor is greatly improved; (3) spray-applied waterproofing membrane layer can improve the cooperative force-bearing capacity of initial support and secondary lining, and improve the stress state of secondary lining, which is beneficial to improve the safety of secondary lining; and (4) with the increase of the cooperative force-bearing capacity of spray-applied waterproofing lining structure, the internal force of spray-applied waterproofing lining structure will be infinitely close to that of single-shell lining structure.
KeywordsTunnel works,   Lining structure,   Numerical calculation,   Spray-applied waterproofing,   Mechanical proper? ties     
Received: 2021-06-20;
Cite this article:   
JIANG Yajun1 HE Bin1 ZHAO Jumei1 LIU Jitai1 WANG Huqun2, 3 .Study on Mechanical Properties of Tunnel Lining Structure with Spray-applied Waterproofing Membrane[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(1): 95-103
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2022/V59/I1/95
 
No references of article
[1] YANG Juan1,2,3 YANG Qixin2,3 QIU Pinming2,3.Experimental Study on the Bonding Performances of Spray-applied Waterproofing Membrane in Tunnels with CSL Structure[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(1): 104-110
[2] LU Guannan1 WANG Peng1 YANG Yun2 MAO Chengjun3 WU Yongjing4 WU Jianfeng3.Review of Researches on Groundwater Seepage Induced Crystallization and Blockage Mechanism and Scale Inhibition Technology in the Tunnel Drainage System in Karst Areas[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(6): 11-20
[3] WEI Gang1 HAO Wei2 WEI Xinjiang1 WANG Xiao2 ZHANG Shuyuan2.Numerical Simulation Study on Whole Construction Process of Vertical Pipe Jacking[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(6): 59-67
[4] WANG Rui1 MIAO Longgang2,3 ZHANG Huijian2,3 NONG Xingzhong1 GUO Hongbo1.Study on Influence of New Transfer Channel Construction on Deformation of Overlying Existing Metro Station in Sandy Pebble Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(6): 129-136
[5] WANG Fei1 WANG Qing2 JIAO Weining2 Qin Wei3.Experimental Study on Dust Reduction Technology for D&B Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(5): 196-203
[6] LI Pengfei1 HUANG Jingluo1,2 CHEN Keyi1 TONG Lei2.Statistical Analysis on Temporal and Spatial Characteristics of the Axial Force of Anchor Bolts in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(5): 227-236
[7] WANG Weiqiang LUO Yonghuan KONG Lingjun ZHANG Yinxi CHEN Yanbei.Numerical Simulation and Experimental Study of Mechanical Properties of GINA Waterstop[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(5): 237-243
[8] CHANG Gang1,2 PAI Lifang3,4 PANG Weijun1,4 WU Honggang1,2,4 YAN Lizhen1.Study on the Effect on Deformation of the Surrounding Rock Induced by DeepBuried Tunnelling under Hard Rock Combination Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(5): 73-77
[9] ZHOU Feilong1 CHEN Quansheng1 JIA Shuaidong1 WEI Yongbing1 WU Yan2.Study on the Ventilation Characteristics of High Drop and Spiral Tunnels during Operation Period[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(4): 150-156
[10] U Li1,2 SUN Yuan1,2 WANG Mingnian1,2.Research on the Calculation Method for Frost-Resistance Fortification Lengths of Tunnels in Cold Regions[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(4): 21-28
[11] LI Xinxi1 YU Haitao2 LI Chunyuan3 YU Xiaodong4 XU Lei5.3D Large-scale Seismic Response Analysis of Bored Section of an Immersed Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(4): 104-108
[12] YE Xinxin1 MIAO Miao2 ZHONG Yujian2 XU Shuoshuo2 DU Ke2.Analysis on Reinforcement Effect of Surface Grouting in Shallow-Buried Tunnels with Asymmetrical Loading and Abundant Underground Water[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(4): 229-236
[13] YANG Chunping HU Qiang.Research on the Detection and Treatment Technology for Highway Tunnel Defects[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(4): 237-245
[14] WAN Zheng1 ZHANG Xuemin1 FENG Han1 OU Xuefeng2 ZHOU Xianshun1.On the Causes and the Control Measures of the Tunnel Inverted Arch Heaving in Water-rich Coal Measure Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(3): 216-222
[15] AN Yonglin1 LI Jiahao1 OUYANG Pengbo2 LIU Wenjuan1 SU Guangming3 ZHOU Jian3.Theoretical Analysis of the Stability of Tunnel Face under Pipe Roof Presupport[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(3): 115-122
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY