Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2024, Vol. 61 Issue (4) :151-160    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on the Influence of Construction Methods of Internal Structures on Longitudinal Mechanical Characteristics of Shield Tunnels
(1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031;2. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063)
Download: PDF (6432KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract To study the longitudinal mechanical properties of shield tunnels with prefabricated assembly + cast-inplace internal structures and fully cast-in-place internal structures under overloading conditions, the Jinan Jiluo Road Yellow River Crossing Tunnel and Wuhan Sanyang Road Tunnel were taken as engineering backgrounds. A three-dimensional numerical model of the surrounding rock-segment-internal structure was established using ABAQUS finite element software, and the rationalityof the numerical model was verified through similar model tests.Comparative analysis of the deformation and mechanical characteristics of the segments and internal structures under different construction methods was conducted. Based on the damage distribution of the internal structures, optimization ideas for connections between components were proposed. The results show that the internal forces borne by the prefabricated assembly+ cast-in-place internal structure are smaller than those of the fully cast-in-place structure. The bending moment and shear force borne by the segments are greater, resulting in larger openings and dislocations compared to the fully cast-in-place structure, with the difference in openings being particularly significant, 10.02%~21.64% higher than the fully cast-in-place structure. Furthermore, the prefabricated assembly +cast-in-place internal structure is more prone to local damage due to stress concentration. When the internal structure experiences large-scale damage, the positive bending moment borne by the loading area decreases, while the negative bending moment borne by the undamaged area at both ends increases, reducing the bending stiffness of the structure and increasing the bending moments and inter-ring openings of the segments.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
LIU Xiaohui1 FENG Kun1 GUO Wenqi1 LU Xuanyi1 PENG Changsheng2 LI Jiaoyang2
KeywordsShield tunnel   Internal structure   Longitudinal mechanical properties   Numerical simulation   Ground surface overload     
Abstract: To study the longitudinal mechanical properties of shield tunnels with prefabricated assembly + cast-inplace internal structures and fully cast-in-place internal structures under overloading conditions, the Jinan Jiluo Road Yellow River Crossing Tunnel and Wuhan Sanyang Road Tunnel were taken as engineering backgrounds. A three-dimensional numerical model of the surrounding rock-segment-internal structure was established using ABAQUS finite element software, and the rationalityof the numerical model was verified through similar model tests.Comparative analysis of the deformation and mechanical characteristics of the segments and internal structures under different construction methods was conducted. Based on the damage distribution of the internal structures, optimization ideas for connections between components were proposed. The results show that the internal forces borne by the prefabricated assembly+ cast-in-place internal structure are smaller than those of the fully cast-in-place structure. The bending moment and shear force borne by the segments are greater, resulting in larger openings and dislocations compared to the fully cast-in-place structure, with the difference in openings being particularly significant, 10.02%~21.64% higher than the fully cast-in-place structure. Furthermore, the prefabricated assembly +cast-in-place internal structure is more prone to local damage due to stress concentration. When the internal structure experiences large-scale damage, the positive bending moment borne by the loading area decreases, while the negative bending moment borne by the undamaged area at both ends increases, reducing the bending stiffness of the structure and increasing the bending moments and inter-ring openings of the segments.
KeywordsShield tunnel,   Internal structure,   Longitudinal mechanical properties,   Numerical simulation,   Ground surface overload     
Cite this article:   
LIU Xiaohui1 FENG Kun1 GUO Wenqi1 LU Xuanyi1 PENG Changsheng2 LI Jiaoyang2 .Study on the Influence of Construction Methods of Internal Structures on Longitudinal Mechanical Characteristics of Shield Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(4): 151-160
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2024/V61/I4/151
 
No references of article
[1] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[2] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[3] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[4] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[5] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[6] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[7] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
[8] JIA Yonggang1 HAO Zihan1 LU Weidong1 WU Fan1 YANG Weiwei2.Mechanical Behavior of Steel Fiber Reinforced Concrete Segments with Different Joint Configurations[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 182-196
[9] TAN Xinyu1 WEI Meng1,2 LAN Lingshen1 SHANG Qiang1 ZHANG Haitao1.Experimental Test and Mechanism Study on Soil Adhesion Reduction Techniques for Mud Cake Formation on Shield Cutterheads[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 219-229
[10] LIU Pengfei1,2 ZENG Dexing2 WANG Xiao3 YANG Zhao2 LI Yu2.Experimental Evaluation and Application Study on the Shield Muck Cake Decomposition Agents[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 230-237
[11] LUO Long1 ZHU Kaicheng2 HAN Yuxuan3 CAI Dong4 LIU Zheqi5 WANG Jun6.Research on Optimization of Construction Methods for Ultra-large Cross-section Tunnels: A Case Study of the Lihuashan Tunnel on the Tianfu New Area-Qionglai Expressway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 273-282
[12] HU Yunjin1,2,3 ZHU Mingwei GAO Huicai REN Zhihao1,2,3.null[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 50-59
[13] LI Yuhua1 GAO Yawei ZHONG Qiufeng1 QIN Lixuan2 LI Junjie CHENG Zhiming2 HUANG Yonghui.Study on the Blasting Effect of Tunnel Wedge Cut under Different Cut Hole Angles[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 108-116
[14] LI Hanyuan1,2 FENG Jin1 GUO Hongyu1 XIE Xiongyao2 ZHOU Hongsheng1 SUN Fei.Study on the Combined Bearing Mechanical Characteristics of the Double-layer Lining Structure of Subsea Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 126-138
[15] SU Heng1 WANG Shimin1 ZHU Xuhong2 QIN Shanliang3.Study on the Mechanical Characteristics of Shield Cutter Cutting Pile Foundation Main Reinforcement Considering Spatial Effects[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 139-150
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY