Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2012, Vol. 49 Issue (4) :170-173    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Discussion of Water Stop Construction Technology for the Construction Joints of a Tunnel Lining
China Railway First Group Co., Ltd
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Water stop construction technology for construction joints and settlement joints in tunnel linings is currently one of the sensitive problems in the construction of waterproofing and water drainage. This paper discusses the connection method, joint strength, and embedded depth of water stops, as well as the fixing and protecting of their exposed height. It also presents water stop construction technology for lining sections with and without reinforcement.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
Keywords:   
Abstract: Water stop construction technology for construction joints and settlement joints in tunnel linings is currently one of the sensitive problems in the construction of waterproofing and water drainage. This paper discusses the connection method, joint strength, and embedded depth of water stops, as well as the fixing and protecting of their exposed height. It also presents water stop construction technology for lining sections with and without reinforcement.
Keywords:   
Cite this article:   
.Discussion of Water Stop Construction Technology for the Construction Joints of a Tunnel Lining[J]  MODERN TUNNELLING TECHNOLOGY, 2012,V49(4): 170-173
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2012/V49/I4/170
 
No references of article
[1] SUN Guoqing PENG Feng ZOU Mingbo.Research and Application of New Grouting Technology with Rigid Sleeve Valve Pipe Strand[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 186-191
[2] YUAN Rongtao1 ZHAI Renfeng2 CHEN Haitao1.Application of Innovative Waterproof Board Laying Trolley in the Beitaizi Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 206-211
[3] WANG Bo-1, GUO Xin-Xin-1, HE Chuan-1, WU De-Xing-2.[J]. MODERN TUNNELLING TECHNOLOGY, 2018,55(5): 1-10
[4] JIANG Yajun1 YANG Qixin1 LIU Dongmin2 SHENG Caoying3.Application and Development of a Sprayed Waterproof Membrane for Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2018,55(2): 11-19
[5] GUO Jun1 WU Gang2 SHEN Yongfang2 XI Xiaozhou2.Full-Scale Model Test for Sand-Filling Foundation Construction Technology in the Nanchang Honggu Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2017,54(6): 56-62
[6] Tuo Yongfei, Guo Xiaohong.General Design and Key Technologies of the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 1-6
[7] Lin Xin1, Shu Heng1, Zhang Yaguo2, Yang Linsong1, Li Jin1, Guo Xiaohong1.Study of the Longitudial Profile Optimization of Large-Diameter Shield Tunnels in Mixed Ground with Very High Water Pressure[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 7-14
[8] Yao Zhanhu1, Yang Zhao2, Tian Yi1, Hu Huitao1.Key Construction Technology for the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 15-23
[9] Li Xinyu, Zhang Dingli, Fang Qian, Song Haoran.On Water Burst Patterns in Underwater Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 24-31
[10] Shu Heng, Wu Shuyuan, Li Jian, Guo Xiaohong.Health Monitoring Design for Extra-Large Diameter Underwater Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 32-40
[11] Liu Guangfeng1, Chen Fangwei2, Zhou Zhi1, Zhang Shilong3, Liu Mingqiang1.Identification of Investment Risks for River-Crossing Tunnels Based on Grey Fuzzy Multi-Attribute Group Decision Making[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 41-48
[12] Yao Zhanhu.Construction Risk Assessment for the Shield-Driven Section of the Nanjing Weisan Road River-Crossing Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 49-54
[13] Zhang Boyang1, Zhao Xiaopeng1, Zhang Yaguo2, Chen Yu1.Risk Control for Saturated Hyperbaric Intervention in Slurry Shield Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 55-61
[14] Li Yufeng1,2, Peng Limin1, Lei Mingfeng1,2.Dynamics Issues Regarding High-Speed Railway Crossing Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 8-15
[15] Zhang Han1,2, Li Yingming1,3, Ren Fangtao2, Yang Mingdong3.Elasto-Plastic Analysis of the Surrounding Rock of a Tunnel/Roadway Based on the Zienkiewicz-Pande Criterion[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 30-35
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY