Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2015, Vol. 52 Issue (3) :95-102    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
A Study of the Dynamic Response Characteristics of a Tunnel Structure Through an Interface of Soft and Hard Rock
(1 Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031;2 Guangzhou Metro Design and Research Institute Co. Ltd., Guangzhou 510308; 3 Fujian University of Technology, Fuzhou 350014)
Download: PDF (1135KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Tunnel portal sections passing through an interface of hard and soft rock are vulnerable to severe damage at this high intensity seismic area. Based on the Longxi tunnelon the Chengdu-Wenchuan expressway, the earthquake dynamic response of a tunnel portal structure was analyzed using the numerical simulation method for various inclination angles of the soft/hard rock interface. The results show that: 1) the relative displacement of the tunnel lining structure increases obviously during a strong earthquake when the tunnel structure passes through the interface between soft and hard rock, and the relative displacement of the tunnel lining in the diagonal direction is higher than the relative horizontal displacement at the tunnel crown and invert; 2) the relative displacement of the tunnel structure at the soft-rock side of the interface increases with the decrease of the inclination angle, while the earthquake motion has little influence on the tunnel structure deformation at the hard-rock side; and 3) under an inclination angle <45°, the earthquake motion has a crucial influence on the safety of the upper tunnel structures (crown and spandrel) with some safety factors being less than 1, and under an inclination angle >45°, the seismic motion has a significant effect on the lower part of the tunnel structure (invert and arch springing).
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
SHEN Yu-Sheng-1
ZOU Cheng-Lu-2
JIN Zong-Zhen-3
WANG Jing-Wei-1
KeywordsTunnel engineering   Interface between soft and hard rock   Dynamic response   Relative displacement   High-intensity earthquake     
Abstract: Tunnel portal sections passing through an interface of hard and soft rock are vulnerable to severe damage at this high intensity seismic area. Based on the Longxi tunnelon the Chengdu-Wenchuan expressway, the earthquake dynamic response of a tunnel portal structure was analyzed using the numerical simulation method for various inclination angles of the soft/hard rock interface. The results show that: 1) the relative displacement of the tunnel lining structure increases obviously during a strong earthquake when the tunnel structure passes through the interface between soft and hard rock, and the relative displacement of the tunnel lining in the diagonal direction is higher than the relative horizontal displacement at the tunnel crown and invert; 2) the relative displacement of the tunnel structure at the soft-rock side of the interface increases with the decrease of the inclination angle, while the earthquake motion has little influence on the tunnel structure deformation at the hard-rock side; and 3) under an inclination angle <45°, the earthquake motion has a crucial influence on the safety of the upper tunnel structures (crown and spandrel) with some safety factors being less than 1, and under an inclination angle >45°, the seismic motion has a significant effect on the lower part of the tunnel structure (invert and arch springing).
KeywordsTunnel engineering,   Interface between soft and hard rock,   Dynamic response,   Relative displacement,   High-intensity earthquake     
published: 2014-08-23
Cite this article:   
SHEN Yu-Sheng-1, ZOU Cheng-Lu-2, JIN Zong-Zhen-3 etc .A Study of the Dynamic Response Characteristics of a Tunnel Structure Through an Interface of Soft and Hard Rock[J]  MODERN TUNNELLING TECHNOLOGY, 2015,V52(3): 95-102
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2015/V52/I3/95
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY