Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2016, Vol. 53 Issue (2) :101-106    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Influence of the Transient Pressure in a Tunnel on the Speed Increase of Existing Passenger Railway Lines
(Department of Maintenance and Repairing, Chengdu Railway Bureau, Chengdu 610081)
Download: PDF (3039KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract  In order to meet the requirements of transport capacity, Chengdu Railway Bureau plans to increase the operating speed of some existing railways, i.e., the speed of the Dachuan-Chengdu railway will be increased from 160 km/h to 200 km/h, and the speed of the Suining-Chengdu railway will be increased from 160 km/h and 200 km/h to 250 km/h. To ensure passenger comfort requirements after the speed-up, a single dimensional characteristic curve method was used to calculate transient pressure inside the train running in the tunnels, and the results were compared with domestic standards to select the vehicle type and verify the proposed speed. The results show that: considering the comfort standard, a CRH2 is recommended as the passenger train, allowing the operation speed of the Dachuan-Chengdu railway and the Suining-Chengdu railway to increase to 200 km/h and 220 km/h respectively; the single-track tunnel plays a controlling roll in the railway speed increase because of its small clearance area, and the passing of two trains should be avoided in the double-track tunnels to minimize the possibility of exceeding the transient pressure standard; in addition to the effects of operation speed and sectional area, more attention should be paid to the sealing property of trains regarding the speed-increase plans, and the principle of “independent dimensioning of every tunnel” should be maintained.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsExisting passenger dedicated railway line   Speed increase   Tunnel   Transient pressure     
Abstract: In order to meet the requirements of transport capacity, Chengdu Railway Bureau plans to increase the operating speed of some existing railways, i.e., the speed of the Dachuan-Chengdu railway will be increased from 160 km/h to 200 km/h, and the speed of the Suining-Chengdu railway will be increased from 160 km/h and 200 km/h to 250 km/h. To ensure passenger comfort requirements after the speed-up, a single dimensional characteristic curve method was used to calculate transient pressure inside the train running in the tunnels, and the results were compared with domestic standards to select the vehicle type and verify the proposed speed. The results show that: considering the comfort standard, a CRH2 is recommended as the passenger train, allowing the operation speed of the Dachuan-Chengdu railway and the Suining-Chengdu railway to increase to 200 km/h and 220 km/h respectively; the single-track tunnel plays a controlling roll in the railway speed increase because of its small clearance area, and the passing of two trains should be avoided in the double-track tunnels to minimize the possibility of exceeding the transient pressure standard; in addition to the effects of operation speed and sectional area, more attention should be paid to the sealing property of trains regarding the speed-increase plans, and the principle of “independent dimensioning of every tunnel” should be maintained.
KeywordsExisting passenger dedicated railway line,   Speed increase,   Tunnel,   Transient pressure     
Cite this article:   
.Influence of the Transient Pressure in a Tunnel on the Speed Increase of Existing Passenger Railway Lines[J]  MODERN TUNNELLING TECHNOLOGY, 2016,V53(2): 101-106
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2016/V53/I2/101
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY