Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2017, Vol. 54 Issue (3) :1-7    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
On Design Issues of Reinforcement of the Secondary Lining of High-Speed Railway Tunnel
(1 China Railway Eryuan Engineering Group Co. Ltd., Chengdu 610031; 2 Beijing Jiaotong University, Beijing 100044)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In order to study the necessity of reinforcement of high-speed railway tunnel secondary linings, and the consistency between the reinforcement design values and actual stress states of reinforcements, the Chinese, German and Japanese standards are compared. Based on the Zhengzhou-Xi′an high-speed railway tunnel projects, the comparative analysis is conducted regarding the design parameters of secondary lining reinforcement and the actual reinforcement stress states in deep and shallow buried tunnels. The results show that: 1) the design of secondary lining reinforcements would be conservative at 50% ~ 60% of the rock loads as stipulated in the specification and the most unfavorable nodes, so there is a big difference between the field measured reinforcement stress values and the designed ones; 2) only the reinforcements at the inner layer of the vault lining are in tension, with tension values of 19.5 MPa; the rests are in compression with small pressure values, and the maximum pressure of the secondary lining reinforcements is 57 MPa at the left and right side walls; 3) in checking the secondary lining structure, the pressure of the surrounding rock can be appropriately reduced; and 4) the lining reinforcements should be determined by engineering analogy and combined with the formula stipulated in the specification.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
YANG Jian-Min- 1 Tan-Zhong-Sheng- 2
KeywordsHigh-speed railway tunnel   Secondary lining   Reinforcement   Necessity   Test analysis     
Abstract: In order to study the necessity of reinforcement of high-speed railway tunnel secondary linings, and the consistency between the reinforcement design values and actual stress states of reinforcements, the Chinese, German and Japanese standards are compared. Based on the Zhengzhou-Xi′an high-speed railway tunnel projects, the comparative analysis is conducted regarding the design parameters of secondary lining reinforcement and the actual reinforcement stress states in deep and shallow buried tunnels. The results show that: 1) the design of secondary lining reinforcements would be conservative at 50% ~ 60% of the rock loads as stipulated in the specification and the most unfavorable nodes, so there is a big difference between the field measured reinforcement stress values and the designed ones; 2) only the reinforcements at the inner layer of the vault lining are in tension, with tension values of 19.5 MPa; the rests are in compression with small pressure values, and the maximum pressure of the secondary lining reinforcements is 57 MPa at the left and right side walls; 3) in checking the secondary lining structure, the pressure of the surrounding rock can be appropriately reduced; and 4) the lining reinforcements should be determined by engineering analogy and combined with the formula stipulated in the specification.
KeywordsHigh-speed railway tunnel,   Secondary lining,   Reinforcement,   Necessity,   Test analysis     
Cite this article:   
YANG Jian-Min- 1 Tan-Zhong-Sheng- 2 .On Design Issues of Reinforcement of the Secondary Lining of High-Speed Railway Tunnel[J]  MODERN TUNNELLING TECHNOLOGY, 2017,V54(3): 1-7
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2017/V54/I3/1
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY