[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2019, Vol. 56 Issue (1) :14-21    DOI:
综述与探讨 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
岩质隧道深浅埋划分方法及判别标准探讨
(1陆军勤务学院,重庆 401311;2中建隧道建设有限公司,重庆 401147;3空军工程大学,西安 710038;4福建省闽武长城岩土工程有限公司,福州 350012)
Discussion on Classification Method and Criterion for the Deep-buried and Shallow-buried Rock Tunnels
(1 Logistical Engineering University of PLA, Chongqing 401311;2 China Construction Tunnel Corp. Ltd., Chongqing 401147; 3 Air Force Engineering University, Xi′an 710038; 4 Fujian Minwu Great Wall Geotechnical Engineering Co., Ltd., Fuzhou 350012)
Download: PDF (2286KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 传统的深埋与浅埋隧道划分方法以普氏压力拱理论为基础,由于普氏理论的局限性,这种划分方法不尽合理。鉴于此,文章将有限元极限分析法应用于隧道深浅埋划分中,提出了隧道深浅埋划分的三条原则。对于Ⅳ级、Ⅴ级围岩的岩质隧道,根据隧道的破坏模式划分深埋与浅埋,破裂面贯通至地表即为浅埋隧道,破裂面没有贯通至地表即为深埋隧道,并利用有限元强度折减法求出浅埋隧道压力拱高度,以此作为深浅埋分界线;对于围岩等级高的岩质隧道,以无衬砌隧道稳定安全系数来划分深浅埋,安全系数大于等于1.5时为深埋隧道,安全系数小于1.5时还要根据破坏模式进行深浅埋判断。此外,深浅埋隧道划分还应考虑环境、施工、地质构造、不稳定块体等因素的影响,由此可能造成围岩整体塌落,形成松散压力。最后,文章建议对于深埋隧道可按弹塑性数值分析计算,而对浅埋隧道除按弹塑性数值分析外,还需按浅埋松散荷载依据荷载-结构模式分析,以确保安全。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词:   
Abstract: The traditional classification for the deep-buried and shallow-buried tunnels is based on the Protodya? konov′s pressure arch theory and not reasonable enough due to its limitation of this theory. In view of this the finite element limit analysis method was applied to the classification for the deep-buried and shallow-buried tunnels, and three principles were put forward. For the rock tunnel with surrounding rock of Ⅳ and Ⅴ, the classification for the deep-buried and shallow-buried tunnels is based on the failure modes of tunnel, it is defined as the shallow-buried tunnel if the fracture plane cuts through ground surface while it is defined as the deep-buried one if the fracture plane doesn′t cut through ground surface, the height of pressure arch of the shallow-buried tunnel obtained by using FEM strength reduction method can be taken as the dividing line for the shallow-buried and deep-buried tunnels.For the rock tunnel with surrounding rock of higher grade, the deep-buried and shallow-buried tunnels are defined according to the stability safety factor of the unlined tunnel, it is defined as the deep-buried tunnel when the stability safety factor is more than or equals 1.5 while the failure mode should also be considered to define them when the stability safety factor is less than 1.5. In addition, the division of deep-buried and shallow-buried tunnels should still consider the effects of environment, construction, geological structure, unstable block, which will cause the surrounding rock collapse and form loose pressure. At last, it is suggested that for the deep-buried and shallow-buried tunnels it can be calculated by elastic-plastic numerical analysis method, but for the shallow-buried tunnel it should also be analyzed according to the load-structure model to ensure safety.
KeywordsDeep-buried tunnel,   Shallow-buried tunnel,   Classification criterion,   Protodyakonov&prime,   s pressure arch,   FEM strength reduction,   Height of shallow-buried pressure arch,   Stability safety factor     
作者简介: 作者简介:邱陈瑜(1981-),男,博士研究生,主要从事隧道与地下工程方面的研究工作,E-mail:553699316@qq.com. 通讯作者:赵尚毅(1969-),男,博士,副教授,主要从事岩土工程稳定性分析及其数值模拟研究工作,E-mail:36283162@qq.com.
引用本文:   
.岩质隧道深浅埋划分方法及判别标准探讨[J]  现代隧道技术, 2019,V56(1): 14-21
.Discussion on Classification Method and Criterion for the Deep-buried and Shallow-buried Rock Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2019,V56(1): 14-21
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2019/V56/I1/14
 
没有本文参考文献
[1] 李瑞俊1 宋宗莹2 李 琛1 王文斌2 任育珍3,4 蔡建华3,4 张家旭3,4.重载铁路梁家山隧道病害多源融合诊断与处置对策[J]. 现代隧道技术, 2025,62(4): 301-308
[2] 张小龙.桩基荷载作用下地铁盾构隧道结构力学响应分析[J]. 现代隧道技术, 2025,62(4): 82-89
[3] 李克玺1,2 党建东3 张 见3 叶光祥4 王晓军1,2 陈青林1,2 曹世荣2 张 河1,2.基于声发射特征参数的不同类型砂岩破裂特征研究[J]. 现代隧道技术, 2025,62(4): 26-36
[4] 周彩荣1 易黎明1 马山青2 周 蠡3 于金弘4,5.三点加载下高性能纤维混凝土顶管承载特性及配筋方案研究[J]. 现代隧道技术, 2025,62(4): 50-60
[5] 郭永军1 李 超2 郑建国3 于永堂4 朱才辉5.地面堆载对西安黄土地层中既有盾构管片影响研究[J]. 现代隧道技术, 2025,62(4): 61-72
[6] 王永刚1 崔翌堃1 吴九七2,3 黄 俊4 沈 翔2,3 杨 奎4 苏 栋2,3.考虑不同磨损形式下的滚刀受力与磨损对比分析[J]. 现代隧道技术, 2025,62(4): 73-81
[7] 冯冀蒙1,2 宋佳黛1,2 王圣涛3 李艺飞1,2 张俊儒1,2 王好明4 汪 波1,2.填海地层特大断面隧道超长管棚变形控制 效能研究[J]. 现代隧道技术, 2025,62(4): 155-162
[8] 徐才坚1 陈星宇1 雷明林1 张兴龙2 孙怀远2 李晓军2.隧道施工掌子面前方围岩富水性数字孪生与风险决策[J]. 现代隧道技术, 2025,62(4): 90-99
[9] 杨 颖1 倪 凯1 葛 林2 张明飞3 王晓睿4.弱光条件下基于改进Unet模型的隧道渗水病害图像分割[J]. 现代隧道技术, 2025,62(4): 100-110
[10] 苏开春1 付 锐2,3 曾弘锐2,3 冷希乔4 郭 春2,3.基于DBO-A-LSTM的公路隧道短时多步交通量预测[J]. 现代隧道技术, 2025,62(4): 111-121
[11] 熊 颖1,2 张俊儒1,2 范子焱1,2 陈佳豪1,2 马荐驰1,2 陈鹏涛1,2 谭瑞锋3,4.层状软岩中爆破应力波传播与振动衰减特性研究[J]. 现代隧道技术, 2025,62(4): 122-131
[12] 刘 杨1 邵泽楷2 田浩帆2 张汝溪1 郑 波3 王峥峥2.高速公路隧道下穿房柱式煤矿采空区爆破施工煤柱 损伤规律研究[J]. 现代隧道技术, 2025,62(4): 132-144
[13] 罗志洋1 张春瑜2,3 王立川1,2,4,5 徐 烁1 李利平4 王倩倩5 刘志强6.TBM裂隙岩体隧洞涌水机制及注浆堵水研究[J]. 现代隧道技术, 2025,62(4): 145-154
[14] 周弋力1 封 坤1 郭文琦1 张亮亮2 李春林3.超大直径盾构隧道管片纵缝抗弯力学行为与损伤过程研究[J]. 现代隧道技术, 2025,62(4): 163-173
[15] 易 丹1 薛皓匀2 杨绍毅2 喻 波1 封 坤2 林 刚1.盾构隧道管片结构螺栓失效对横向地震响应的影响分析[J]. 现代隧道技术, 2025,62(4): 174-181
Copyright 2010 by 现代隧道技术