[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2021, Vol. 58 Issue (6) :21-30    DOI:
研究与探讨 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
冷水混入模式对藏南隧道高温热害预测的影响
(中国地质调查局水文地质环境地质调查中心,保定 071051)
Effect of Cold Water Mixing Modes on Prediction of High Geo-temperature Induced Heat Hazards in Tunnelling in South Tibet
(Center for Hydrogeology and Environmental Geology Survey, Baoding 071051)
Download: PDF (5432KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 拉月隧道为川藏铁路高温热害易发路段,针对与其紧密相关的长青温泉、排龙温泉与拉月温泉进行水化学与同位素分析,得出上述温泉具有不同成因,且均有冷水混入,其中拉月温泉冷水混入比高达91%。考虑冷水混入对隧道高温热害预测的影响,提出了两种温泉冷水混入模式,其中热水与浅层冷水混合模式下,冷热水混合带一般接近或高于温泉点高程,在低于温泉点高程位置修建隧道遇到高温热害风险较大;热水与承压冷水混合模式下,冷热水混合带一般为承压冷水含水层位置,低于温泉点高程,在高于温泉点高程位置修建隧道遇到高温热害风险较小。依据地形地貌、地质构造与温泉、钻孔等地质信息,推断研究区温泉为热水与浅层冷水混合模式,基于上述观点对川藏铁路拉月隧道高温热害提出预测,划定了6段高温热害危险区,其中①~④段热害温度可能较高,⑥段需开展进一步研究以确定其热害程度。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
付 雷 马 鑫 邵 炜
关键词:   
Abstract: Layue tunnel is located on Sichuan-Tibet railway, it is prone to high geo-temperature induced heat haz? ards. So, hydrochemical and isotopic analysis is carried out for Changqing, Pailong and Layue hot springs, which are closely related to the tunnel. It is found that the above hot springs are formed by different causes and all mixed with cold water. Among the others, the mixing ratio of cold water in Layue hot spring is as high as 91%. Considering the effect of cold water mixing on the prediction of high geo-temperature induced heat hazards in the tunnel, two mixing modes of cold water in hot-spring are put forward. In the mixing mode of shallow cold water with hot water, the mixing zone of cold and hot water is generally close to or higher than the elevation of the hot spring point. So, the heat hazard risk induced by high geo-temperature would be greater when a tunnel is built below the elevation of the hot spring point. In the mixing mode of hot water and confined cold water, the mixing zone of cold and hot water is generally located in the confined cold water aquifer, lower than the elevation of the hot spring point. The heat hazard risk induced by high geo-temperature would be smaller when a tunnel is built above the elevation of the hot spring point.According to the landform, geological structure, hot springs, boreholes and other geological information, it is inferred that the hot springs in the studied area are the mixing mode of hot water and shallow cold water. Based on the above viewpoint, the high geo-temperature induced heat hazards are predicted for the Layue tunnel and it is determined that there are 6 sections with high geo-temperature induced heat hazard risks. Among them, the section ① ~ ④might have higher heat hazards, and section ⑥ should be further researched to determine the degree of the heat hazard.
KeywordsHigh geo-temperature induced heat hazard,   Cold water mixing,   Railway tunnel,   Hot spring,   Hydro? chemistry     
基金资助:基金项目:国家重点研发计划项目(2018YFB1501801);中国地质调查局地调项目(DD20190534).
作者简介: 作者简介:付 雷(1986-),男,硕士,高级工程师,主要从事地热地质方面的研究工作,E-mail:57330959@qq.com. 通讯作者:马 鑫(1986-),男,硕士,高级工程师,主要从事水工环地质方面的研究工作,E-mail:maxin@mail.cgs.gov.cn.
引用本文:   
付 雷 马 鑫 邵 炜 .冷水混入模式对藏南隧道高温热害预测的影响[J]  现代隧道技术, 2021,V58(6): 21-30
FU Lei MA Xin SHAO Wei .Effect of Cold Water Mixing Modes on Prediction of High Geo-temperature Induced Heat Hazards in Tunnelling in South Tibet[J]  MODERN TUNNELLING TECHNOLOGY, 2021,V58(6): 21-30
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2021/V58/I6/21
 
没有本文参考文献
[1] 李瑞俊1 宋宗莹2 李 琛1 王文斌2 任育珍3,4 蔡建华3,4 张家旭3,4.重载铁路梁家山隧道病害多源融合诊断与处置对策[J]. 现代隧道技术, 2025,62(4): 301-308
[2] 张小龙.桩基荷载作用下地铁盾构隧道结构力学响应分析[J]. 现代隧道技术, 2025,62(4): 82-89
[3] 李克玺1,2 党建东3 张 见3 叶光祥4 王晓军1,2 陈青林1,2 曹世荣2 张 河1,2.基于声发射特征参数的不同类型砂岩破裂特征研究[J]. 现代隧道技术, 2025,62(4): 26-36
[4] 周彩荣1 易黎明1 马山青2 周 蠡3 于金弘4,5.三点加载下高性能纤维混凝土顶管承载特性及配筋方案研究[J]. 现代隧道技术, 2025,62(4): 50-60
[5] 郭永军1 李 超2 郑建国3 于永堂4 朱才辉5.地面堆载对西安黄土地层中既有盾构管片影响研究[J]. 现代隧道技术, 2025,62(4): 61-72
[6] 王永刚1 崔翌堃1 吴九七2,3 黄 俊4 沈 翔2,3 杨 奎4 苏 栋2,3.考虑不同磨损形式下的滚刀受力与磨损对比分析[J]. 现代隧道技术, 2025,62(4): 73-81
[7] 冯冀蒙1,2 宋佳黛1,2 王圣涛3 李艺飞1,2 张俊儒1,2 王好明4 汪 波1,2.填海地层特大断面隧道超长管棚变形控制 效能研究[J]. 现代隧道技术, 2025,62(4): 155-162
[8] 徐才坚1 陈星宇1 雷明林1 张兴龙2 孙怀远2 李晓军2.隧道施工掌子面前方围岩富水性数字孪生与风险决策[J]. 现代隧道技术, 2025,62(4): 90-99
[9] 杨 颖1 倪 凯1 葛 林2 张明飞3 王晓睿4.弱光条件下基于改进Unet模型的隧道渗水病害图像分割[J]. 现代隧道技术, 2025,62(4): 100-110
[10] 苏开春1 付 锐2,3 曾弘锐2,3 冷希乔4 郭 春2,3.基于DBO-A-LSTM的公路隧道短时多步交通量预测[J]. 现代隧道技术, 2025,62(4): 111-121
[11] 熊 颖1,2 张俊儒1,2 范子焱1,2 陈佳豪1,2 马荐驰1,2 陈鹏涛1,2 谭瑞锋3,4.层状软岩中爆破应力波传播与振动衰减特性研究[J]. 现代隧道技术, 2025,62(4): 122-131
[12] 刘 杨1 邵泽楷2 田浩帆2 张汝溪1 郑 波3 王峥峥2.高速公路隧道下穿房柱式煤矿采空区爆破施工煤柱 损伤规律研究[J]. 现代隧道技术, 2025,62(4): 132-144
[13] 罗志洋1 张春瑜2,3 王立川1,2,4,5 徐 烁1 李利平4 王倩倩5 刘志强6.TBM裂隙岩体隧洞涌水机制及注浆堵水研究[J]. 现代隧道技术, 2025,62(4): 145-154
[14] 周弋力1 封 坤1 郭文琦1 张亮亮2 李春林3.超大直径盾构隧道管片纵缝抗弯力学行为与损伤过程研究[J]. 现代隧道技术, 2025,62(4): 163-173
[15] 易 丹1 薛皓匀2 杨绍毅2 喻 波1 封 坤2 林 刚1.盾构隧道管片结构螺栓失效对横向地震响应的影响分析[J]. 现代隧道技术, 2025,62(4): 174-181
Copyright 2010 by 现代隧道技术