[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (3) :85-95    DOI:
数值分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
高地应力软岩隧道双层初期支护围岩变形特征
(1.兰州交通大学土木工程学院,兰州 730070;2.中铁隧道局集团有限公司,广州 511458)
On Surrounding Rock Deformation Characteristics in a High Geostress Soft Rock Tunnel with Double-layer Initial Support
(1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070; 2. China Railway Tunnel Group Co., Ltd., Guangzhou 511458)
Download: PDF (4881KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为控制高地应力软岩隧道围岩变形,优化双层初期支护结构,以宁缠隧道为工程背景,通过数值模拟方法分析隧道在双层初期支护不同厚度组合和第二层支护不同施作时机下的变形情况,结合现场监测数据分析单、双层初期支护围岩变形特征,验证数值模拟的准确性。结果表明:在第一层初期支护层厚不大于0.04倍隧道跨径时,增大第一层初期支护厚度对控制隧道拱顶和拱腰变形均有较好的效果,但随着厚度增大,控制效果增强幅度逐渐减弱。第一、二层初期支护厚度比为0.8~2.7时,围岩变形量与厚度比符合指数函数关系。拱腰收敛比拱顶沉降对第二层初期支护施作时机更为敏感。第一、二层支护厚度分别取35 cm和20 cm能较好控制围岩变形,并保证现场的可操作性。下台阶开挖完成前属于围岩应力释放的集中期,开挖卸荷影响占变形主导地位;施作二次衬砌后,围岩流变占变形主导地位。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
陈志敏1 王 洪1 龚 军2 李增印2 彭 易1
关键词隧道工程   软岩大变形隧道   极高地应力   双层初期支护   初期支护厚度比     
Abstract: In order to control the surrounding rock deformation of a tunnel in soft rock with high geostress and opti? mize the double-layer initial support structure, the Ningchan Tunnel is used as an example in this study. The numerical simulation method is used to analyze the deformation characteristics under different thickness combinations of double-layer initial support and at different construction time of the second-layer support. The field monitoring data is also used to analyze the surrounding rock deformation characteristics of single-layer and double-layer initial support, and to verify the accuracy of the numerical simulation. As the results indicate: If the thickness of the first-layer initial support is no more than 0.04 times the tunnel span, increasing the thickness of the first-layer the initial support is highly effective in controlling the deformation of tunnel crown and hance. As the thickness increases, however,the controlling effect is gradually diminished. If the thickness ratio between the first-layer and second-layer initial support is 0.8-2.7, the ratio between the surrounding rock deformation and thickness is indicative of an exponential function relation. Hance convergence is more sensitive to the construction time of the second-layer initial support than crown settlement is. If the first-layer and second-layer support are 35 cm and 20 cm in thickness, the surrounding rock deformation can be effectively controlled, and the onsite operability can be guaranteed. The period before excavation of the lower bench is completed is the period in which the surrounding rock intensively releases its stress, and the impact of the excavation-induced unloading is the dominant factor in deformation. After construction of the secondary lining, the surrounding rock rheology is the dominant factor in deformation.
KeywordsTunnel engineering,   Tunnel in soft rock with large deformation,   Extremely high geostress,   Double-layer initial support,   Thickness ratio of initial support     
基金资助:国家自然科学基金(12262018,11662007);中央引导地方科技发展资金项目(22ZY1QA005).
作者简介: 陈志敏(1979-),男,博士,教授,主要从事岩土与隧道工程方面的教学与科研工作,E-mail:czm@mail.lzjtu.cn. 通讯作者:王 洪(1998-),男,硕士研究生,主要从事岩土与隧道工程方面研究工作,E-mail:1754664565@qq.com.
引用本文:   
陈志敏1 王 洪1 龚 军2 李增印2 彭 易1 .高地应力软岩隧道双层初期支护围岩变形特征[J]  现代隧道技术, 2024,V61(3): 85-95
CHEN Zhimin1 WANG Hong1 GONG Jun2 LI Zengyin2 PENG Yi1 .On Surrounding Rock Deformation Characteristics in a High Geostress Soft Rock Tunnel with Double-layer Initial Support[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(3): 85-95
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I3/85
 
没有本文参考文献
[1] 朱建林1 王立川2,3 刘志强1 马利遥2,3 李庆斌2.考虑流变效应的软岩大变形隧道多层支护作用机理分析[J]. 现代隧道技术, 2024,61(3): 18-24
[2] 蒋 源 王海林 陈 兆.基于深度学习的隧道不良地质体超前预报图像智能预测算法[J]. 现代隧道技术, 2024,61(3): 148-156
[3] 赵 勇1 王明年2,3 于 丽2,3 张 霄2,3.中国隧道支护结构设计理论及方法发展与展望[J]. 现代隧道技术, 2024,61(2): 28-42
[4] 张民庆1 马伟斌2,3 郭小雄2,3 罗 驰2,3 郑泽福2,3.隧道防排水技术及材料进展与展望[J]. 现代隧道技术, 2024,61(2): 167-177
[5] 何发亮.隧道工程岩体分级回顾与展望[J]. 现代隧道技术, 2024,61(2): 60-66
[6] 王建宇.创新之树常青——《现代隧道技术》创刊60周年[J]. 现代隧道技术, 2024,61(2): 1-4
[7] 刘世昊1 宋战平1,2,3 徐磊磊4 夏震昭5 王军保1,2,3.基于SVM-MAUT的隧道低碳施工方案优选[J]. 现代隧道技术, 2023,60(6): 68-79
[8] 朱宇杰 李培楠 刘雨晴 张子尧.有氮掺杂介孔碳材料的CO2吸附性能及其工程应用研究[J]. 现代隧道技术, 2023,60(6): 91-99
[9] 张士朝1,2 王亚琼1,2 高启栋1,2 周海孝1,2 王志丰1,2 任 锐1,2.基于不同优化算法的隧道洞口段拱顶沉降SVR预测模型及其比较评价[J]. 现代隧道技术, 2023,60(6): 139-150
[10] 申玉生1,2 赵何霖1 朱正超1 易鹏豪1 雷 龙3 粟 威3.强震区浅埋隧道洞口段改进整体式反应位移法[J]. 现代隧道技术, 2023,60(5): 78-87
[11] 翁 源1 李爱春1 赵 婷1 刘步武2.隧道工程系统韧性影响因素及评价研究[J]. 现代隧道技术, 2023,60(5): 40-47
[12] 罗 超1 李泽宇1 刘如飞1 李艳艳1 李 明2.基于固定站激光扫描数据的公路隧道拱顶多期形变监测方法[J]. 现代隧道技术, 2023,60(5): 158-166
[13] 王建宇.追求隧道工程与地质体的和谐——矿山法隧道工程若干热点问题探讨[J]. 现代隧道技术, 2023,60(4): 1-5
[14] 郑坤隆 1,2 王剑云 2 令狐延 1 杨晓华 3 丁亚特 1 陈 锟 1 王志丰 3.速凝渗透结晶型浆液用于隧道渗漏的防治试验研究[J]. 现代隧道技术, 2023,60(4): 254-263
[15] 李 伟 1 蒋雅君 2 刘世军 2 王萃娟 3 肖华荣 4 崔恒涛 2.隧道混凝土基面岩溶水碳酸钙结晶生长机理研究[J]. 现代隧道技术, 2023,60(4): 246-253
Copyright 2010 by 现代隧道技术