[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (3) :18-24    DOI:
研究与探讨 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
考虑流变效应的软岩大变形隧道多层支护作用机理分析
(1.中铁西南科学研究院有限公司,成都 611731;2.中铁十八局集团有限公司,天津 300222;3.中南大学 土木工程学院,长沙 410075)
Analysis on Action Mechanism of Multi-layer Support in Soft Rock Large Deformation Tunnels with Consideration of Rheological Effects
(1. China Railway Southwest Research Institute Co., Ltd., Chengdu 611731; 2. China Railway 18th Bureau Group Co., Ltd., Tianjin 300222; 3. School of Civil Engineering, Central South University, Changsha 410075)
Download: PDF (2219KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为了更好地描述软岩大变形隧道多层支护作用下围岩的流变特性,假定围岩本构模型为黏弹-塑性流变模型,塑性屈服准则选用Mohr-Coulomb屈服准则,将多层支护作用简化为分时分次施加不同大小的恒定支护力,推导多层支护作用下围岩位移的解析解。通过与有限差分数值解进行对比分析,得到两种方法的围岩位移随时间变化规律基本一致的结论,验证了解析解的合理性。通过具体算例,分析多层支护对围岩应力场、位移场的影响。研究结果表明:(1)隧道开挖同时施加的第一层支护力产生的围岩位移与围岩的黏弹-塑性效应有关,后续施加的支护力产生的位移增量仅与围岩的黏弹性效应有关;(2)随着时间的推移和多层支护作用下围岩洞壁支护反力的增加,围岩塑性区与黏弹性区交界面切向应力逐渐减小;(3)围岩径向位移从洞壁到围岩深处呈递减趋势分布,随着时间的增加,位移逐渐增大,直至变形稳定。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
朱建林1 王立川2
3 刘志强1 马利遥2
3 李庆斌2
关键词软岩大变形隧道   流变效应   多层支护   围岩位移   围岩应力     
Abstract: In order to better describe the rheological characteristics of surrounding rock under multi-layer support in soft rock tunnel with large deformation, the constitutive model of surrounding rock is assumed to be a viscoelasticplastic rheological model, and the plastic yield criterion is selected as the Mohr-Coulomb yield criterion. The multilayer support is simplified as applying different constant support forces at different times. The analytical solution of the displacement of surrounding rock under multi-layer support is derived. By comparing and analyzing with the finite difference numerical solution, it is concluded that the displacement of surrounding rock over time obtained by the two methods is basically consistent, verifying the rationality of the analytical solution. Through specific examples,the influence of multi-layer support on the stress field and displacement field of surrounding rock is analyzed. The research results show that: (1) The displacement of surrounding rock caused by the first-layer support force applied simultaneously with tunnel excavation is related to the viscoelastic-plastic effect of surrounding rock, and the incremental displacement caused by subsequently applied support forces is only related to the viscoelastic effect of sur? rounding rock; (2) With the increase of time and the increase of the support reaction force on the tunnel wall under multi-layer support, the tangential stress at the interface between the plastic zone and the viscoelastic zone of surrounding rock gradually decreases; (3) The radial displacement of surrounding rock shows a decreasing trend from the tunnel sidewall to the depth of surrounding rock, and increases with time until the deformation stabilizes.
KeywordsSoft rock tunnel with large deformation,   Rheological effects,   Multi-layer support,   Surrounding rock dis? placement,   Surrounding rock stress     
基金资助:中铁十八局集团有限公司科技研究开发计划课题(G23-02-S).
作者简介: 朱建林(1993-),男,硕士,工程师,主要从事软岩大变形隧道方面研究工作,E-mail: zhujl_93@163.com. 通讯作者:王立川(1965-),男,博士,正高级工程师,主要从事隧道及地下工程方面研究工作,E-mail:wlc773747@126.com.
引用本文:   
朱建林1 王立川2, 3 刘志强1 马利遥2, 3 李庆斌2 .考虑流变效应的软岩大变形隧道多层支护作用机理分析[J]  现代隧道技术, 2024,V61(3): 18-24
ZHU Jianlin1 WANG Lichuan2, 3 L IU Zhiqiang1 MA Liyao2, 3 LI Qingbin2 .Analysis on Action Mechanism of Multi-layer Support in Soft Rock Large Deformation Tunnels with Consideration of Rheological Effects[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(3): 18-24
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I3/18
 
没有本文参考文献
[1] 陈志敏1 王 洪1 龚 军2 李增印2 彭 易1.高地应力软岩隧道双层初期支护围岩变形特征[J]. 现代隧道技术, 2024,61(3): 85-95
[2] 张崇辉 梁庆国 孙纬宇 岳建平 张兴臣.考虑流变效应的泥岩隧道仰拱变形特征研究[J]. 现代隧道技术, 2023,60(4): 116-127
[3] 田兴朝 刘远明 陶铁军 杨家曌 马智理.软弱破碎围岩隧道施工力学特性模型试验研究[J]. 现代隧道技术, 2020,57(5): 200-209
[4] 朱永生 1 李鹏飞 2.Hoek-Brown强度准则研究进展及岩体力学参数取值[J]. 现代隧道技术, 2020,57(1): 8-17
[5] 李沿宗 赵 爽.某高地应力软岩隧道施工方案及多层支护结构变形分析[J]. 现代隧道技术, 2019,56(3): 161-165
[6] 马时强 1,2.大变形隧道洞周位移与深部围岩位移的关系及应用研究[J]. 现代隧道技术, 2017,54(6): 85-92
[7] 陈红军 1,2 刘新荣 1,2 王 成 3 宿钟鸣 4.倾斜软硬互层隧道破坏过程的围岩应力研究[J]. 现代隧道技术, 2017,54(4): 68-76
[8] 温 森1,2 刘予会2 杨圣奇1 贺子奇2.基于Hoek-Brown准则的圆形洞室围岩流变变形研究[J]. 现代隧道技术, 2016,53(3): 63-67
[9] 傅鹤林, 张加兵, 袁维, 史越.基于复变理论的盾构隧道围岩位移预测分析[J]. 现代隧道技术, 2016,53(2): 86-94
[10] 陈思阳1 朱彦鹏2 黄丽华1.隧道围岩位移的混沌时间序列预测分析[J]. 现代隧道技术, 2015,52(3): 75-81
[11] 杨灵1.2 韩立军1.2 蔚立元1.2.浅埋隧道洞口段Ⅳ级围岩开挖方案比选数值分析[J]. 现代隧道技术, 2013,50(1): 67-72
[12] 李德武1,2, 马为功3.二次衬砌施作时机的弹粘塑性有限元分析[J]. 现代隧道技术, 2012,49(4): 6-9
[13] 张春生1, 侯靖1, 朱永生2, 朱焕春2.深埋隧洞围岩应力分布与破坏机理[J]. 现代隧道技术, 2011,48(3): 7-13
Copyright 2010 by 现代隧道技术