[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2025, Vol. 62 Issue (5) :161-    DOI:
数值分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
海底盾构隧道施工期温度场演化与通风风量动态调控研究
(1. 中铁十四局集团有限公司,济南 250013; 2. 重庆大学土木工程学院,重庆 400041)
Study on the Evolution of the Temperature Field and Dynamic Regulation of Ventilation Airflow during the Construction of Submarine Shield Tunnels
(1. China Railway 14th Bureau Group Co., Ltd., Jinan 250013;
2. School of Civil Engineering, Chongqing University, Chongqing 400041)
Download: PDF (6898KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为揭示外界环境温度变化与施工循环耦合作用下海底隧道内温度场演化规律并优化通风参数,首先通过现场监测分析隧道内非稳态温度场演化特征;然后建立考虑盾构机刀盘摩擦热的三维通风传热数值模型,对比研究施工、停工情况下隧道内的温度动态响应,进而对典型阶段的通风参数进行适应性优化。研究结果表明:(1)隧道温度沿程分布规律不受施工启停影响,隧道掘进至6 932 m、外界环境温度为24.3 ℃时,从1号台车至1 300环区间温度呈现出“先骤降(刀盘~3 350环)后缓降(3 350环~1 300环)”的特征,掘进面后方3 km范围外温度趋于稳定;(2)盾构机掘进时1号台车区域流场涡旋较多,热空气滞留、散热较慢,导致该处温度较高,停工后温度先缓慢升高、再逐渐降低;(3)外界气温变动对洞内环境温度影响较大,通风风量需根据施工期的不同阶段分别进行配置。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
刘四进1 马浴阳1 周小涵2 喻星乔1 徐 梁2 王 ?2
关键词海底盾构隧道   施工循环   温度场演化   通风参数调控     
Abstract: To reveal the evolution law of the temperature field inside submarine tunnels under the coupled effects of external environmental temperature variations and construction cycles, and to optimize ventilation parameters, both field monitoring and numerical simulations were conducted. First, the non-steady-state evolution characteristics of the tunnel temperature field were analyzed based on field measurements. Then, a three-dimensional ventilation-heat transfer numerical model considering cutterhead frictional heat generation was established to comparatively investigate the dynamic thermal responses of the tunnel during excavation and shutdown conditions. Adaptive optimization of ventilation parameters was subsequently performed for representative construction stages. The results show that: (1) The temperature distribution along the tunnel is not affected by construction stoppages. When the tunnel advances to 6,932 m and the ambient temperature is 24.3 °C, the temperature from the first segment car to the 1,300th ring exhibits a “rapid drop (cutterhead-ring 3,350) followed by a gradual decline (ring 3,350-ring 1,300)” pattern, and becomes stable beyond 3 km behind the tunnel face. (2) During excavation, the airflow around the first segment car forms multiple vortices, leading to heat retention and a relatively higher temperature; after stoppage, the temperature initially rises slowly and then gradually decreases. (3) External temperature fluctuations exert significant influence on the tunnel′s internal temperature, and ventilation airflow should be dynamically adjusted according to different construction phases.
KeywordsSubmarine shield tunnel,   Construction cycle,   Temperature field evolution,   Ventilation parameter regulation     
基金资助:国家自然科学基金面上项目(52374079);中铁十四局集团有限公司科研计划课题(913700001630559891202103).
作者简介: 李四进(1988-),男,博士,高级工程师,主要从事隧道及地下工程方面的研究工作,E-mail:ahlsj@126.com.
引用本文:   
刘四进1 马浴阳1 周小涵2 喻星乔1 徐 梁2 王 ?2 .海底盾构隧道施工期温度场演化与通风风量动态调控研究[J]  现代隧道技术, 2025,V62(5): 161-
LIU Sijin1 MA Yuyang1 Zhou Xiaohan2 Yu Xingqiao1 Xu Liang2 Wang Yan2 .Study on the Evolution of the Temperature Field and Dynamic Regulation of Ventilation Airflow during the Construction of Submarine Shield Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2025,V62(5): 161-
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2025/V62/I5/161
 
没有本文参考文献
Copyright 2010 by 现代隧道技术