[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2020, Vol. 57 Issue (1) :26-35    DOI:
研究与探讨 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | >>
破碎围岩大跨公路隧道结构健康度评价方法研究
(1同济大学,上海 200092;2上海地下基础设施安全检测与养护装备工程技术研究中心,上海 200092;3深圳市交通公用设施建设中心,深圳 518000)
Study on Health Evaluation Method of Large-Span Highway Tunnel with Fractured Surrounding Rocks
(1 Tongji University, Shanghai 200092;2 Shanghai Engineering Research Center of Underground Infrastructure Detection and Maintenance Equipment, Shanghai 200092;3 Shenzhen Transportation Public Facilities Construction Center, Shenzhen 518000)
Download: PDF (5423KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 目前关于大跨隧道结构在松动荷载作用下的受力变形与损伤演化机理研究相对较少,缺乏运营期隧道结构的健康度评价体系与预警标准,不利于掌握隧道结构的安全状态。针对上述问题,文章通过建立二维及三维数值分析模型,研究了Ⅳ级、Ⅴ级围岩下大跨隧道结构在松动荷载下的受力变形特性,并依据变形及破损特征,建立了5级评价体系与3级预警标准。研究结论为:(1)拱部松动荷载作用下大跨隧道的破坏过程分为四个阶段,分别为设计荷载下的弹性受力阶段、拱部松动荷载下的弹性受力阶段、结构开裂后的塑性工作阶段及加速变形破坏阶段;(2)设计荷载下,采用荷载规范计算方法与三维数值模拟方法得出的隧道变形基本一致,验证了数值计算的可行性。通过数值计算,得出Ⅳ级围岩下结构极限承载力为734 kPa,拱顶沉降6.75 cm,边墙收敛1.56 cm。Ⅴ级围岩下结构极限承载力为812 kPa,拱顶沉降10.47 cm,边墙收敛4.06 cm;(3)以拱顶开裂、局部压屈、拱顶拱腰压屈、拱腰压屈达到衬砌厚度的1/3、钢筋拉断为关键节点,以结构受力、拱顶沉降、边墙收敛为评价指标,建立了Ⅳ级、Ⅴ级围岩下大跨隧道的健康度评价体系及预警标准。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
刘学增 1
2 蔡 鑫 3 丁茂瑞 3 陈福斌 3 邓 枫 3
关键词:   
Abstract: At present, there are few research on the mechanism of deformation and damage evolution of large-span tunnel structure under loose load, lacking health evaluation system and early warning standard of the tunnel structure in operation, which is not conducive to understand the safety state of tunnel structure. Aiming at these problems, this paper studies the mechanical and deformation characteristics of large-span tunnel structure under loose load in the surrounding rocks of grade Ⅳ and Ⅴ by establishing two-dimensional and three-dimensional numerical analysis models. A 5-grade evaluation system and 3-level early warning standard are established based on the characteristics of deformation and damage. It comes to the following conclusions: (1) the failure process of the large-span tunnel under loose load is divided into four stages, namely elastic stress stage under designed load, elastic stress stage under loose load, plastic working stage after structure cracking and accelerated deformation and failure stage;(2) under designed load, the tunnel deformation obtained by three-dimensional numerical simulation method is basically consistent with that by the calculation method of load code, which verifies the feasibility of numerical calcula? tion. By numerical calculation, it is found that in the surrounding rocks of grade Ⅳ, the ultimate bearing capacity is 734 kPa, the crown settlement is 6.75 cm, the convergence of sidewall is 1.56 cm; in the surrounding rocks of grade V, the ultimate bearing capacity is 812 kPa, the crown settlement is 10.47 cm, the convergence of side-wall is 4.06cm; (3) a health degree evaluation system and early warning standard of large-span tunnels in the surrounding rocks of grade IV and V are established by taking the vault cracking, local buckling, vault and haunch buckling, haunch buckling depth reaching 1/3 of lining thickness and rebar tensile rupture as the key nodes and structure stress,crown settlement and side-wall convergence as the evaluation indexes.
KeywordsLarge-span tunnel,   Lining structure,   Health degree,   Fractured surrounding rocks,   loose load     
基金资助:基金项目:深圳市交通公用设施建设中心交通建设工程课题“坪盐通道工程(城市道路特长大断面隧道数字化建管养关键技术研究)” (20160318002B);国家自然科学基金资助项目“松动荷载引起的公路隧道衬砌损伤演化特征及套拱加固的计算方法”(51478342).
作者简介: 作者简介:刘学增(1971-),男,博士,教授级高级工程师,研究生导师,主要从事隧道建设安全风险评估、新型监测检测技术、结构健康诊断及加固设计理论等关键技术研究工作,E-mail: xuezengl@263.net.
引用本文:   
刘学增 1, 2 蔡 鑫 3 丁茂瑞 3 陈福斌 3 邓 枫 3 .破碎围岩大跨公路隧道结构健康度评价方法研究[J]  现代隧道技术, 2020,V57(1): 26-35
LIU Xuezeng1, 2 CAI Xin3 DING Maorui3 CHEN Fubin3 DENG Feng3 .Study on Health Evaluation Method of Large-Span Highway Tunnel with Fractured Surrounding Rocks[J]  MODERN TUNNELLING TECHNOLOGY, 2020,V57(1): 26-35
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2020/V57/I1/26
 
没有本文参考文献
[1] 魏新江 1,2 陈涛涛 2 王 霄 2 虞兴福 1 周联英 1.岩爆灾害研究与进展[J]. 现代隧道技术, 2020,57(2): 1-12
[2] 覃 晖 1 唐 玉 2 谢雄耀 3,4 王峥峥 1.基于支持向量机的隧道衬砌空洞机器识别方法[J]. 现代隧道技术, 2020,57(2): 13-19
[3] 朱宝合 郑邦友 戴亦军 刘 灿.基于非线性支持向量机的隧道煤与瓦斯突出危险性预测[J]. 现代隧道技术, 2020,57(2): 20-25
[4] 闫长斌 姜晓迪.基于岩体指标和掘进参数的TBM净掘进速率预测模型[J]. 现代隧道技术, 2020,57(2): 26-33
[5] 章龙管 1 段文军 1 庄元顺 1 张中华 1 刘绥美 1 章 峰 2.盾构大数据预处理方法研究[J]. 现代隧道技术, 2020,57(2): 34-41
[6] 廖 凯 1 李 林 2 吴 剑 1.隧道超欠挖检测信息系统设计与实现[J]. 现代隧道技术, 2020,57(2): 42-48
[7] 张 军 1 王明慧 1,2 向道银 1 张 桥 1 蒋树平 1 刘伟帮.郑万高铁重庆段隧道二次衬砌施工质量管理实践[J]. 现代隧道技术, 2020,57(2): 49-54
[8] 秦鹏飞.地下工程注浆技术研究新进展[J]. 现代隧道技术, 2020,57(2): 55-60
[9] 张金龙 1 苟长飞 2 叶 飞 3.大断面跨海盾构隧道结构设计与参数分析[J]. 现代隧道技术, 2020,57(2): 61-67
[10] 郑邦友 1 陈富东 2 雷明锋 2 吴治刚 1 彭 成 1 姚 宇 1.考虑生态环境效应的止水帷幕设计方法初探[J]. 现代隧道技术, 2020,57(2): 68-72
[11] 郭志杰 1,2 张灿程 1,2.静电除尘在天山胜利隧道通风中的应用研究[J]. 现代隧道技术, 2020,57(2): 73-79
[12] 闫 肃 1,2.采用平导超前和无轨运输方式的长大瓦斯隧道施工六阶段通风技术[J]. 现代隧道技术, 2020,57(2): 80-85
[13] 单 超 1,2 甘 露 2,3 王亚东 2 曹校勇 1,2 赖金星 2.灰土挤密桩加固黄土隧道受力与变形性状分析[J]. 现代隧道技术, 2020,57(2): 86-95
[14] 赵 伟 1,2 雷升祥 1,2,3 肖清华 1,2 刘纪峰 4 陈桥枫 1,2.基于结构特征曲线的软岩隧道钢拱架力学效应研究[J]. 现代隧道技术, 2020,57(2): 96-103
[15] 于 丽 1,2 汪主洪 1,2 张艺腾 1,2 江勇涛 1,2 王明年.浅埋黄土隧道土石分界高度对初期支护结构安全性的影响分析[J]. 现代隧道技术, 2020,57(2): 104-109
Copyright 2010 by 现代隧道技术