[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2021, Vol. 58 Issue (4) :210-217    DOI:
施工技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
双层盾构隧道内部预制拼装车道结构拼装偏差分析及对策
(上海市政工程设计研究总院(集团)有限公司,上海 200092)
Analysis of and Countermeasures against the Assembly Deviations of Prefabricated and Assembled Lane Structure in Double-deck Shield-driven Tunnels
(Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092)
Download: PDF (4454KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 盾构隧道为纵向柔性结构,存在错台、轴线偏差等现象,与预制化高精度施工要求相驳。通常结合盾构隧道同步施工工艺,通过现浇带、找平层来修正、消除盾构变形偏差,即形成“主体预制+少量现浇”的整体式预制拼装结构。但是,盾构隧道内部空间十分有限,过多的现浇带、过厚的找平层,不仅经济性、时效性差,还占用宝贵的内部空间。所以,需合理设置现浇带、找平层,使其既能满足消除盾构隧道纵向不均匀变形的需求,又不过多地占用空间。因此,文章基于上海诸光路通道实测轴线偏差值及相关文献资料,分析盾构隧道纵向不均匀变形的特征,并结合施工工艺,得出盾构隧道内预制拼装车道结构消除盾构隧道纵向不均匀变形的合理方案,以及合理的找平层厚度取值。结果表明:上层预制车道结构通过现浇植筋基座消除绝大部分的盾构隧道纵向不均匀变形,少量纵向不均匀变形及拼装偏差由找平层来消除;下层预制车道结构通过找平层消除盾构隧道纵向不均匀变形及拼装偏差;上、下层预制车道结构合理的找平层厚度取值分别为100 mm和130 mm。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
刘 念
关键词:   
Abstract: A shield-driven tunnel is a longitudinal flexible structure prone to such issues as dislocation and axis deviation, which are contrary to the requirements for high precision in prefabricated construction. In view of this, the common practice is to correct and eliminate shield tunnel deformation-induced deviations by means of cast-inplace strips and leveling layers in conjunction with the synchronous construction process in shield tunnelling. In other words, it is to form a monolithic prefabricated and assembled structure of "prefabricated main body + small amount of cast-in-place component". However, the space inside the shield-driven tunnel is so limited that excessive cast-in-place strips and over-thick leveling layers are not economical or time-efficient, and would also take up valuable internal space. Therefore, the cast-in-place strips and leveling layers should be set up in a reasonable manner so that they meet the need to eliminate longitudinal uneven deformations in shield-driven tunnels without taking up too much space. In light of this, this paper analyzes the characteristics of longitudinal uneven deformations in shield-driven tunnels based on the measured axis deviations in Shanghai Zhuguang Road tunnel and extant relevant literatures, and combined with the construction process it proposes a reasonable solution to eliminate longitudinal uneven deformations in shield tunnels with prefabricated and assembled lane structures, as well as a reasonable value for the thickness of the leveling layer. The results show that as for the upper prefabricated lane structure, the cast-in-place concrete base with bonded rebars could eliminate most of longitudinal uneven deformations in shielddriven tunnels, while leveling layers could eliminate a small amount of longitudinal uneven deformations and assembly deviations. For the lower prefabricated lane structure, longitudinal uneven deformations and assembly deviations in the shield-driven tunnel could be eliminated with leveling layers. The reasonable thickness of leveling layer for the upper and lower prefabricated lane structures is 100 mm and 130 mm respectively.
KeywordsShield tunnel,   Double-deck lane structure,   Prefabrication and assembly,   Deviations of structure,   Lev? eling layer thickness     
基金资助:上海市科委项目(16DZ1201903);上海市政总院项目(K2016K079,K2018K091)
作者简介: 刘 念(1988-),男,硕士,工程师,主要从事隧道和地下工程设计和研究工作,E-mail: liunian@smedi.com.
引用本文:   
刘 念 .双层盾构隧道内部预制拼装车道结构拼装偏差分析及对策[J]  现代隧道技术, 2021,V58(4): 210-217
LIU Nian .Analysis of and Countermeasures against the Assembly Deviations of Prefabricated and Assembled Lane Structure in Double-deck Shield-driven Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2021,V58(4): 210-217
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2021/V58/I4/210
 
没有本文参考文献
[1] 王志杰 1 李金宜 1 蒋新政 1 李 振 1 曾 青 2 王 宁 2.浅埋偏压双侧近接隧道影响分区及对策研究[J]. 现代隧道技术, 2021,58(4): 1-11
[2] 王文娟 高 鑫.高水压作用下深埋隧道双层叠合衬砌稳定性影响因素研究[J]. 现代隧道技术, 2021,58(4): 12-20
[3] 于 丽 1,2 孙 源 1,2 王明年 1,2.寒区隧道抗冻设防长度的计算方法研究[J]. 现代隧道技术, 2021,58(4): 21-28
[4] 秦尚友 1 陈佳耀 2 张东明 2 杨同军 1 黄宏伟 2 赵 帅 2.基于深度学习的隧道工作面岩石结构自动化判别[J]. 现代隧道技术, 2021,58(4): 29-36
[5] 李鹏举 1 郑方坤 2 吕建兵 3 吴维俊 3 刘 锋 3 陈贡发 3.基于大数据迁移学习的灰岩地区排水孔淤堵自动识别技术[J]. 现代隧道技术, 2021,58(4): 37-47
[6] 宋福彬 1 杨 杰 1 程 琳 1 吕 高 1, 2 宋 洋 1.地质雷达正演在隧洞衬砌病害识别中的应用[J]. 现代隧道技术, 2021,58(4): 48-56
[7] 翟 强 顾伟红 荆肇秦.地铁联络通道冻结法施工安全风险评价[J]. 现代隧道技术, 2021,58(4): 57-66
[8] 叶 飞 1 何 彪 1 田崇明 1 王思宇 1 王 坚 1 宋桂锋 2.三乙醇胺早强剂研究进展及在隧道工程中的应用展望[J]. 现代隧道技术, 2021,58(4): 67-78
[9] 谢 军 1,2 倪雅静 2 胡英飞 2 包淑贤 2 李延涛 1.振动台试验模型箱的研究进展[J]. 现代隧道技术, 2021,58(4): 79-85
[10] 惠 强 1 张 军 2 姜海波 1.深埋高地应力水工隧洞节理岩体开挖塑性区特征及分布规律研究[J]. 现代隧道技术, 2021,58(4): 86-94
[11] 张莉莉 1 郎松军 1 邓 林 2 臧 程 3.季冻区隧道砂岩三轴压缩力学特性及损伤本构模型研究[J]. 现代隧道技术, 2021,58(4): 95-103
[12] 李心熙 1 禹海涛 2 李春元 3 于晓东 4 徐 磊 5.沉管隧道暗埋段三维大规模地震响应分析[J]. 现代隧道技术, 2021,58(4): 104-108
[13] 冯 义.基于动荷载的交叠盾构隧道两阶段安全分析[J]. 现代隧道技术, 2021,58(4): 109-116
[14] 王 博 1 郑鹏飞 1 胡江洋 1 刘军勇 1 刘 硕 2.近距离平行盾构隧道施工数值模拟及影响因素分析[J]. 现代隧道技术, 2021,58(4): 117-124
[15] 张 宏 1,2 刘海洋 1,3.地铁隧道盾构掘进对上跨地道基坑稳定性影响研究[J]. 现代隧道技术, 2021,58(4): 125-132
Copyright 2010 by 现代隧道技术