[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2021, Vol. 58 Issue (4) :210-217    DOI:
施工技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
双层盾构隧道内部预制拼装车道结构拼装偏差分析及对策
(上海市政工程设计研究总院(集团)有限公司,上海 200092)
Analysis of and Countermeasures against the Assembly Deviations of Prefabricated and Assembled Lane Structure in Double-deck Shield-driven Tunnels
(Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092)
Download: PDF (4454KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 盾构隧道为纵向柔性结构,存在错台、轴线偏差等现象,与预制化高精度施工要求相驳。通常结合盾构隧道同步施工工艺,通过现浇带、找平层来修正、消除盾构变形偏差,即形成“主体预制+少量现浇”的整体式预制拼装结构。但是,盾构隧道内部空间十分有限,过多的现浇带、过厚的找平层,不仅经济性、时效性差,还占用宝贵的内部空间。所以,需合理设置现浇带、找平层,使其既能满足消除盾构隧道纵向不均匀变形的需求,又不过多地占用空间。因此,文章基于上海诸光路通道实测轴线偏差值及相关文献资料,分析盾构隧道纵向不均匀变形的特征,并结合施工工艺,得出盾构隧道内预制拼装车道结构消除盾构隧道纵向不均匀变形的合理方案,以及合理的找平层厚度取值。结果表明:上层预制车道结构通过现浇植筋基座消除绝大部分的盾构隧道纵向不均匀变形,少量纵向不均匀变形及拼装偏差由找平层来消除;下层预制车道结构通过找平层消除盾构隧道纵向不均匀变形及拼装偏差;上、下层预制车道结构合理的找平层厚度取值分别为100 mm和130 mm。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
刘 念
关键词:   
Abstract: A shield-driven tunnel is a longitudinal flexible structure prone to such issues as dislocation and axis deviation, which are contrary to the requirements for high precision in prefabricated construction. In view of this, the common practice is to correct and eliminate shield tunnel deformation-induced deviations by means of cast-inplace strips and leveling layers in conjunction with the synchronous construction process in shield tunnelling. In other words, it is to form a monolithic prefabricated and assembled structure of "prefabricated main body + small amount of cast-in-place component". However, the space inside the shield-driven tunnel is so limited that excessive cast-in-place strips and over-thick leveling layers are not economical or time-efficient, and would also take up valuable internal space. Therefore, the cast-in-place strips and leveling layers should be set up in a reasonable manner so that they meet the need to eliminate longitudinal uneven deformations in shield-driven tunnels without taking up too much space. In light of this, this paper analyzes the characteristics of longitudinal uneven deformations in shield-driven tunnels based on the measured axis deviations in Shanghai Zhuguang Road tunnel and extant relevant literatures, and combined with the construction process it proposes a reasonable solution to eliminate longitudinal uneven deformations in shield tunnels with prefabricated and assembled lane structures, as well as a reasonable value for the thickness of the leveling layer. The results show that as for the upper prefabricated lane structure, the cast-in-place concrete base with bonded rebars could eliminate most of longitudinal uneven deformations in shielddriven tunnels, while leveling layers could eliminate a small amount of longitudinal uneven deformations and assembly deviations. For the lower prefabricated lane structure, longitudinal uneven deformations and assembly deviations in the shield-driven tunnel could be eliminated with leveling layers. The reasonable thickness of leveling layer for the upper and lower prefabricated lane structures is 100 mm and 130 mm respectively.
KeywordsShield tunnel,   Double-deck lane structure,   Prefabrication and assembly,   Deviations of structure,   Lev? eling layer thickness     
基金资助:上海市科委项目(16DZ1201903);上海市政总院项目(K2016K079,K2018K091)
作者简介: 刘 念(1988-),男,硕士,工程师,主要从事隧道和地下工程设计和研究工作,E-mail: liunian@smedi.com.
引用本文:   
刘 念 .双层盾构隧道内部预制拼装车道结构拼装偏差分析及对策[J]  现代隧道技术, 2021,V58(4): 210-217
LIU Nian .Analysis of and Countermeasures against the Assembly Deviations of Prefabricated and Assembled Lane Structure in Double-deck Shield-driven Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2021,V58(4): 210-217
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2021/V58/I4/210
 
没有本文参考文献
[1] 李瑞俊1 宋宗莹2 李 琛1 王文斌2 任育珍3,4 蔡建华3,4 张家旭3,4.重载铁路梁家山隧道病害多源融合诊断与处置对策[J]. 现代隧道技术, 2025,62(4): 301-308
[2] 张小龙.桩基荷载作用下地铁盾构隧道结构力学响应分析[J]. 现代隧道技术, 2025,62(4): 82-89
[3] 李克玺1,2 党建东3 张 见3 叶光祥4 王晓军1,2 陈青林1,2 曹世荣2 张 河1,2.基于声发射特征参数的不同类型砂岩破裂特征研究[J]. 现代隧道技术, 2025,62(4): 26-36
[4] 周彩荣1 易黎明1 马山青2 周 蠡3 于金弘4,5.三点加载下高性能纤维混凝土顶管承载特性及配筋方案研究[J]. 现代隧道技术, 2025,62(4): 50-60
[5] 郭永军1 李 超2 郑建国3 于永堂4 朱才辉5.地面堆载对西安黄土地层中既有盾构管片影响研究[J]. 现代隧道技术, 2025,62(4): 61-72
[6] 王永刚1 崔翌堃1 吴九七2,3 黄 俊4 沈 翔2,3 杨 奎4 苏 栋2,3.考虑不同磨损形式下的滚刀受力与磨损对比分析[J]. 现代隧道技术, 2025,62(4): 73-81
[7] 冯冀蒙1,2 宋佳黛1,2 王圣涛3 李艺飞1,2 张俊儒1,2 王好明4 汪 波1,2.填海地层特大断面隧道超长管棚变形控制 效能研究[J]. 现代隧道技术, 2025,62(4): 155-162
[8] 徐才坚1 陈星宇1 雷明林1 张兴龙2 孙怀远2 李晓军2.隧道施工掌子面前方围岩富水性数字孪生与风险决策[J]. 现代隧道技术, 2025,62(4): 90-99
[9] 杨 颖1 倪 凯1 葛 林2 张明飞3 王晓睿4.弱光条件下基于改进Unet模型的隧道渗水病害图像分割[J]. 现代隧道技术, 2025,62(4): 100-110
[10] 苏开春1 付 锐2,3 曾弘锐2,3 冷希乔4 郭 春2,3.基于DBO-A-LSTM的公路隧道短时多步交通量预测[J]. 现代隧道技术, 2025,62(4): 111-121
[11] 熊 颖1,2 张俊儒1,2 范子焱1,2 陈佳豪1,2 马荐驰1,2 陈鹏涛1,2 谭瑞锋3,4.层状软岩中爆破应力波传播与振动衰减特性研究[J]. 现代隧道技术, 2025,62(4): 122-131
[12] 刘 杨1 邵泽楷2 田浩帆2 张汝溪1 郑 波3 王峥峥2.高速公路隧道下穿房柱式煤矿采空区爆破施工煤柱 损伤规律研究[J]. 现代隧道技术, 2025,62(4): 132-144
[13] 罗志洋1 张春瑜2,3 王立川1,2,4,5 徐 烁1 李利平4 王倩倩5 刘志强6.TBM裂隙岩体隧洞涌水机制及注浆堵水研究[J]. 现代隧道技术, 2025,62(4): 145-154
[14] 周弋力1 封 坤1 郭文琦1 张亮亮2 李春林3.超大直径盾构隧道管片纵缝抗弯力学行为与损伤过程研究[J]. 现代隧道技术, 2025,62(4): 163-173
[15] 易 丹1 薛皓匀2 杨绍毅2 喻 波1 封 坤2 林 刚1.盾构隧道管片结构螺栓失效对横向地震响应的影响分析[J]. 现代隧道技术, 2025,62(4): 174-181
Copyright 2010 by 现代隧道技术